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Squirming inside a liquid droplet with surface viscosities
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The possibility of encapsulating therapeutic substances with active particles inside
droplets, thereby propelling their motion from within, presents exciting opportunities
for biomedical applications such as targeted drug delivery. In realistic biological and
environmental settings, droplet interfaces often exhibit complex interfacial rheological
behaviors due to different molecules or particles laden on the interface. Motivated by this
complexity, we investigate the effects of interfacial rheology on the motion of an active
droplet consisting of a liquid droplet enclosing an active particle described by the squirmer
model. Specifically, we examine theoretically how surface shear and dilatational viscosities
impact the propulsion of both the enclosed squirmer and the enclosing droplet. Our results
indicate that while surface shear viscosity has no impact on the propulsion speeds, both
the droplet and the squirmer swim slower with increased surface dilatational viscosity. The
independence of propulsion speeds from surface shear viscosity is a feature shared with
the classical problem of a translating droplet with surface viscosities. However, we add a
cautionary remark on the subtlety in interpreting the impact of surface viscosities in these
two problems. We also examine how the presence of surface viscosities affects the flow
field and energetic cost in this active droplet system. These findings represent a first step
towards understanding how complexities arising from realistic biological or environmental
settings influence the behavior of microswimmer-driven droplets, paving the way for their
potential applications in these complex environments.

DOI: 10.1103/PhysRevFluids.10.033104

I. INTRODUCTION

Emulsion droplets have emerged as promising platforms in droplet microfluidics, serving as
microcompartments for chemical and biological reactions [1,2]. In particular, the ability to encap-
sulate living cells within droplets offers a precise and controlled microenvironment for conducting
high-throughput, cell-based assays [3,4]. Recently, the encapsulation of motile cells, such as the
nematode Caenorhabditis elegans [5,6], within droplets has sparked inquiries into the potential for
inducing motion of the encapsulating droplet by the active particles it contains. Beyond biological
cells, the development of artificial microswimmers has attracted substantial attention in recent
decades for their potential biomedical and environmental applications [7–12]. The possibility of
encapsulating therapeutic substances with artificial microswimmers within a droplet, propelling its
motion from within, therefore opens up exciting opportunities for their utilization in drug delivery
and related applications.
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In previous experiments where nematodes [5,6] and magnetically rotated helical micropropellers
[13] were enclosed within droplets, the encapsulating droplets were not observed to be motile.
The lack of observable droplet motion has been attributed to the droplets being anchored due to the
constraints of microfluidic setups or the relatively small size of the swimmer in comparison to the
droplet. A combined theoretical and numerical study by Reigh et al. [14] showed that a spherical
squirmer enclosed in a droplet of comparable size is able to propel the droplet. The swimming
motion of the squirmer is impacted by the confinement effect due to the fluid-fluid interface of the
droplet, which moves at a speed depending on the surface velocity distribution on the squirmer. It
was shown that the droplet always moves slower than a squirmer with tangential surface velocities,
whereas a squirmer with both tangential and radial surface velocities is able to attain the same
swimming speed as the droplet, maintaining a concentric configuration in their coswimming state.
A later analysis based on a collection of point forces inside the droplet [15] also demonstrated the
ability of generating droplet propulsion through internal active devices. In addition, the effect of an
imposed shear flow on the deformation dynamics of a droplet encapsulating a model microswimmer
has also been considered theoretically [16].

In many naturally occurring and industrial scenarios, the fluid-fluid interfaces, however, are often
laden with different molecules or particles. These complex interfaces display various interfacial
behaviors beyond what a single value of surface tension can describe [17–19]. It is therefore of
interest to examine how various complex interfacial behaviors affect the motion of active droplets.
In particular, Shaik et al. [20] investigated how Marangoni stresses due to surfactant concentration
inhomogeneities influence the locomotion inside a surfactant-laden drop. Another mechanism the
contaminants can affect the interfacial behavior is through the generation of interfacial viscous
stresses. The movement of the contaminants on the interface can cause shear and dilatational
friction, characterized by surface viscosities, leading to additional resistance to shear and dilatational
deformations of the interface [17–19]. More recently, Sprenger et al. [21] presented a first analysis
on how interfacial rheology affects the motion of an active droplet enclosing a swimmer. Specif-
ically, the study focuses on the effect of surface shear viscosity and represents the encapsulated
particle as different flow singularities inside the droplet. A similar approach was also employed to
investigate the motion of a swimming microorganism modeled as a Stokes dipole outside a droplet
with surface shear viscosity [22].

In this work, we extend previous studies by investigating the effect of both surface shear and
dilatational viscous stresses on the motion of a liquid droplet enclosing an active particle modeled as
a squirmer [23–26]. The squirmer model allows us to consider swimmers of finite sizes and examine
how geometrical factors influence the propulsion behaviors. Furthermore, the treatment via Lamb’s
general solution [27,28] allows us to obtain exact, analytical results for the problem. Our results
have elucidated individual and combined effects of surface shear and dilatational viscosities on the
swimming kinematics and energetics as well as the flows surrounding the active droplet and the
enclosed swimmer. The exact solutions presented here will also be useful for validating subsequent
numerical treatments of related problems.

The remainder of the paper is structured as follows. We formulate the problem in Sec. II,
presenting the governing equations, boundary conditions, and solution method. In Sec. III, we
discuss the results on the propulsion speeds of the squirmer and the droplet (Sec. III A), their
surrounding flows (Sec. III B), and the energetic cost (Sec. III C) of squirming inside a drop with
surface viscosities. We also highlight the subtlety in interpreting the impact of surface viscosities on
squirming inside a liquid droplet, before some concluding remarks in Sec. IV.

II. PROBLEM FORMULATION

A. Governing equations and boundary conditions

We consider a spherical squirmer with a distribution of tangential surface velocity [23–26],
usq = ∑∞

n=1 BnVn(cos θ )eθ , where Vn = −2P1
n (cos θ )/[n(n + 1)] and P1

n (cos θ ) are the associated

033104-2



SQUIRMING INSIDE A LIQUID DROPLET WITH …

FIG. 1. A spherical squirmer with radius r1 is enclosed concentrically within a spherical droplet with
radius r2. The squirming motion generates a flow (u1, p1) in the interior fluid with viscosity μ1 and a flow
(u2, p2) in the exterior fluid with viscosity μ2. The droplet interface is characterized with both surface shear
(μs) and dilatational (μd ) viscosities, modeled by the Boussinesq-Scriven constitutive equation. The unknown
propulsion speeds of the squirmer and the droplet are denoted as US and UD, respectively.

Legendre polynomials of the first kind. In an unbounded Stokes flow, the B1 mode is associated with
a source dipole and is the only mode contributing to swimming, whereas the B2 mode is associated
with a force dipole. Therefore, only the first two modes are typically considered in locomotion
problems and their relative signs can be adjusted to represent a puller (B2/B1 > 0; e.g., the alga
Chlamydomonas), a pusher (B2/B1 < 0; e.g., the bacterium Escherichia coli), or a neutral squirmer
(B2/B1 = 0). Here, we focus our analysis on a squirmer of radius r1 with the first two tangential
squirming modes,

usq = [B̄1 sin θ + (B̄2/2) sin 2θ ]eθ , (1)

enclosed in a spherical droplet of radius r2 in a concentric configuration, as illustrated in Fig. 1.
The effect due to a radial squirming motion is discussed in Appendix B. The surface tension on
the drop is assumed to be sufficiently large so that the drop remains spherical in shape in the low
capillary number regime. Under this geometric configuration, due to axisymmetry, the squirmer and
the droplet both propel along the z direction with velocities US = USez and UD = UDez, respectively,
but their magnitudes are generally different (US �= UD). The fluids inside and outside the droplet are
Newtonian with the interior and exterior dynamic viscosities denoted as μ1 and μ2, respectively.
The incompressible flow inside and outside the droplet, therefore, satisfy the Stokes equations,

−∇p j + μ j∇2u j = 0, ∇ · u j = 0, (2)

where p j are the pressure fields and u j are the velocity fields interior ( j = 1) and exterior ( j = 2)
to the droplet. We consider the problem in the laboratory frame, where the velocity in the far field
decays to zero, u2(r → ∞) = 0. On the squirmer’s surface (r = r1), the velocity is given by a
combination of the prescribed squirming velocity and the unknown propulsion velocity,

u1 = usq + US. (3)

On the droplet interface (r = r2), the tangential and and normal velocities are continuous,

u1 · t = u2 · t, (4)

u1 · n = u2 · n = UD cos θ, (5)

033104-3



NGANGUIA, ADEGBUYI, UFFENHEIMER, AND PAK

where t and n are the tangential and normal unit vectors, respectively. The stress balance at the
interface is given by

(T2 − T1)·n = −∇s · τs, (6)

where T j = −p jI + μ j[∇u j + (∇u j )T ] is the fluid stress tensor, ∇s = P · ∇ is the surface gradient
operator, and P = I − nn is the surface projection tensor. Here, the jump in traction is balanced
by surface tension and interfacial stresses, modeled by the Boussinesq-Scriven constitutive equa-
tion [29] as

τs = γ P + (μd − μs)(∇s · us)P + 2μsDs, (7)

where γ is the surface tension, μd is the surface dilatational viscosity, μs is the surface shear
viscosity, us is the velocity on the droplet surface, and Ds = {P · [∇sus + (∇sus)T ] · P}/2 is the
surface rate of the deformation tensor. In the regime of small capillary numbers, where capillary
forces dominate over viscous forces that tend to deform the drop, slight deviations from a spherical
shape generate sufficient variations in curvature to satisfy the normal stress balance over the drop
surface. Thus, the drop remains approximately spherical in this regime. Within the framework of
domain perturbations, a spherical drop shape is prescribed as the leading-order approximation. In
this case, the far-field condition, the tangential velocity continuity [Eq. (4)], and the kinematic
boundary condition describing the rigid body motion of the spherical drop [Eq. (5)], along with
the tangential stress balance in Eq. (6), are sufficient to fully determine the leading-order velocity
and pressure fields. The normal stress balance in Eq. (6) can then be used to compute the next-order
approximation to the drop shape in the domain perturbation technique [30,31].

We nondimensionalize lengths by the radius of the squirmer r1, velocities by the first swimming
mode B̄1, and stresses by μ2B̄1/r1. Upon nondimensionalization of the governing equations and
boundary conditions, relevant dimensionless groups emerge: First, the ratio β = B̄2/B̄1 character-
izes the relative strength of the second swimming mode relative to the first mode. Second, the
geometric ratio b = r2/r1 measures the size of the droplet relative to that of the enclosed squirmer.
Third, the viscosity contrast λ = μ1/μ2 compares the dynamic viscosity of the interior fluid to
that of the exterior fluid. Finally, the dilatational Boussinesq number Bqd = μd/(μ2r1) and shear
Boussinesq number Bqs = μs/(μ2r1) emerge, comparing the relative strength of different interfacial
viscous stresses with the bulk viscous stress. Hereafter, we refer only to dimensionless quantities
and use the same symbols as their dimensional counterparts for convenience.

B. Solution method: Lamb’s general solution

We obtain the solution to the Stokes equations, Eqs. (2), via Lamb’s general solution
[14,28,32,33]. For this axisymmetric problem, the general solution of the velocity field in spherical
coordinates is denoted as u j = ur, jer + uθ, jeθ . The velocity field of the interior flow ( j = 1) is
expressed as [34,35]

ur,1 =
∞∑

n=0

(
Anrn+1 + Bnrn−1 + Cn

rn
+ Dn

rn+2

)
Pn(cos θ ), (8)

uθ,1 =
∞∑

n=1

(
−n + 3

2
Anrn+1 − n + 1

2
Bnrn−1 + n − 2

2

Cn

rn
+ n

2

Dn

rn+2

)
Vn(cos θ ), (9)

whereas the velocity field of the exterior flow ( j = 2) is expressed as

ur,2 =
∞∑

n=0

(
Gnrn+1 + Hnrn−1 + En

rn
+ Fn

rn+2

)
Pn(cos θ ), (10)

uθ,2 =
∞∑

n=1

(
−n + 3

2
Gnrn+1 − n + 1

2
Hnrn−1 + n − 2

2

En

rn
+ n

2

Fn

rn+2

)
Vn(cos θ ). (11)
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Here, Pn(cos θ ) is the Legendre polynomial of degree n. The unknown coefficients An, Bn, Cn,
Dn, En, Fn, Gn, and Hn are to be determined by boundary conditions in the problem. The far-field
condition of a quiescent flow requires that Gn = Hn = 0. The velocity distribution on the squirmer
surface, Eq. (3), requires

ur,1(r = 1) = US cos θ, (12)

uθ,1(r = 1) = (1 − US ) sin θ + β

2
sin (2θ ), (13)

whereas the continuity of the tangential and normal velocities on the droplet surface, Eqs. (4) and
(5), requires

ur,1(r = b) = ur,2(r = b), (14)

ur,1(r = b) = UD cos θ, (15)

uθ,1(r = b) = uθ,2(r = b). (16)

Finally, the tangential component of the stress balance at the interface (r = b) given by Eq. (6),

Trθ,2 − Trθ,1 = − 1

b2

[
2Bqsuθ + (Bqd + Bqs)

∂

∂θ

[
1

sin θ

∂

∂θ
(uθ sin θ )

]
+ 2Bqd

∂ur

∂θ

]
, (17)

provides the remaining equation required to determine the unknown coefficients in the system in
terms of the propulsion speeds of the squirmer, US , and droplet, UD. The unknown propulsion speeds
are then determined by applying the force-free condition on the surfaces of the squirmer (S1) and
the droplet (S2): ∫

S1

T1 · n dS =
∫

S2

T2 · n dS = 0. (18)

III. RESULTS AND DISCUSSION

A. Propulsion speeds

By applying the method via Lamb’s general solution described in Sec. II B, the propulsion speed
of the enclosed squirmer is given by

US = 2(2b5 − 5b2 + 3)Bqd + 2b[b5(3λ + 2) + (5b2 − 3)(λ − 1)]

b6(9λ + 6) + 6(b5 − 1)Bqd + 6b(λ − 1)
, (19)

whereas the speed of the enclosing droplet is given by

UD = 10b3λ

b6(9λ + 6) + 6(b5 − 1)Bqd + 6b(λ − 1)
· (20)

We discuss several features of the propulsion speeds of the squirmer and the droplet. Firstly, similar
to the case of an unbounded squirmer, the propulsion speeds are independent of β, meaning that only
the B̄1 mode contributes to the propulsion of the squirmer and the droplet. Pushers and pullers (B̄2 �=
0) have the same speed as the corresponding neutral squirmer (B̄2 = 0). Secondly, the propulsion
speeds reduce to the results by Reigh et al. [14] for an enclosing clean drop without surface viscosity
in the limit of Bqs = Bqd = 0. In addition, it is observed that the propulsion speeds only depend on
the surface dilatational viscosity through Bqd , independent of the surface shear viscosity (Bqs). Such
a feature is also observed in the classical problem of a translating droplet with surface viscosities
[36,37], where the translational speed only depends on the surface dilatational viscosity and the
surface shear viscosity is unimportant [38]. When the surface dilatational viscosity increases (i.e.,
increasing Bqd ), both the swimming speed of the enclosed squirmer and the speed of the enclosing

033104-5



NGANGUIA, ADEGBUYI, UFFENHEIMER, AND PAK

(a) (b)

FIG. 2. Propulsion speeds of (a) the enclosed squirmer and (b) the enclosing drop, scaled by the propulsion
speed of a squirmer U0 = 2/3 in an unbounded fluid, as a function of Bqd for different values of viscosity ratio,
λ. The dotted line in (a) denotes the result in the limit of squirming under spherical rigid confinement [34].
Inset in (b) displays the ratio of the propulsion speed of the squirmer to that of the drop. In all cases, b = 1.5.

drop decrease monotonically as shown in Figs. 2(a) and 2(b), respectively. This qualitative feature
remains the same across different regimes of viscosity contrast shown in Fig. 2 (λ < 1, λ = 1,
and λ > 1). In the limit of Bqd → ∞, the surface dilatational viscosity immobilizes the interface,
effectively rendering it similar to a rigid confinement. The results therefore reduce to the motion of a
squirmer under rigid spherical confinement [34], where US → (2b5 − 5b2 + 3)/[3(b5 − 1)] [black
dotted line, Fig. 2(a)] and UD → 0 [Fig. 2(b)]. As a remark, the inset of Fig. 2(b) shows that the
squirmer always swims faster than its enclosing droplet in the concentric configuration, UD/US < 1,
for all values of Bqd . We verify in Fig. 3 that this feature holds for different values of viscosity ratio
λ and the relative size of the droplet b considered in this work.

FIG. 3. The ratio of the propulsion speed of the squirmer to that of the droplet (UD/US) as a function of the
viscosity ratio (λ) and the relative size of the droplet (b). Here Bqd = 10.
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(a) (b)

(c) (d)

FIG. 4. Scaled propulsion speed of the squirmer as a function of the relative size of the droplet for different
values of Bqd (see legends) when (a) λ = 0.1, (c) λ = 1, and (d) λ = 10. Panel (b) displays the relative size of
the droplet to the squirmer at which the local minimum of the scaled propulsion speed occurs (bm) as a function
of Bqd for various values of λ < 1.

We further contrast the impacts of surface viscosities on this active droplet system with those
on the classical translating droplet problem [36–38]. As previously mentioned, a key similarity in
both problems is that the translational speed of the droplets (and the enclosed squirmer in the active
droplet problem) depends solely on the surface dilatational viscosity, with no influence from the
surface shear viscosity. However, we also observe a qualitatively distinct feature between the two
scenarios. In the translating droplet problem, the motion of the droplet with surface viscosities
is equivalent to that of a clean drop with a modified interior viscosity (in dimensional terms)
μ∗

1 = μ1 + 2μd/(3r2). Thus, the effect of surface (dilatational) viscosity may be understood as an
equivalent increase in the interior viscosity in the translating droplet problem. However, neither the
quantitative transformation nor the qualitative understanding applies to the active droplet problem.
As shown in Fig. 2, increasing the interior viscosity (higher λ) enhances the propulsion speeds of
both the active droplet and the squirmer. In contrast, increasing the surface dilatational viscosity
(higher Bqd ) reduces their speeds. Therefore, the impact of surface viscosity in the active droplet
problem cannot be understood as an effective increase in interior viscosity, as it is in the classical
translating droplet problem.

Next, we examine how the propulsion speed of the squirmer varies with the relative size
of the droplet at different values of Bqd in Fig. 4. The system displays qualitatively different
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characteristics depending on the regime of viscosity ratio. When λ < 1 (e.g., λ = 0.1), the en-
closed squirmer generally propels at a speed less than its unbounded speed (US/U0 < 1) for all
values of b shown in Fig. 4(a), exhibiting a local minimum for different values of Bqd . The
presence of the surface dilatational viscosity (Bqd > 1) does not alter this feature qualitatively
but consistently reduces the propulsion speed as Bqd increases. In addition, Fig. 4(b) shows
that the local minimum of the propulsion speed shifts to smaller values of b as Bqd increases
for different small viscosity contrasts (λ < 1). When the interior and exterior viscosities are the
same (λ = 1), the squirmer propels at its unbounded speed (US/U0 = 1) in the absence of surface
viscosity [Bqd = 0; Fig. 4(c)]. With surface dilatational viscosity (Bqd > 0), the propulsion speed
consistently decreases and a local minimum emerges, similar to the behavior observed in the
λ < 1 regime [Fig. 4(a)]. Finally, when λ > 1 (e.g., λ = 10), in contrast to the speed variation
observed for λ < 1, the enclosed squirmer always propels at a speed faster than its unbounded speed
(US/U0 > 1) when there is no surface viscosity (Bqd = 0), exhibiting a local maximum as shown in
Fig. 4(d). When the interfacial viscous effect is relatively weak (Bqd = 1), the inclusion of surface
dilatational viscosity consistently reduces the propulsion speed without altering the qualitative
behavior. However, with a stronger interfacial viscous effect (Bqd = 100), there is a qualitative
change in the speed variation with b. This stronger effect substantially reduces the propulsion
speed to below the unbounded speed and induces a local minimum, rather than a maximum, in
the variation.

B. Flow field

We utilize the analytical solution to examine the velocity field interior and exterior to the droplet.
The coefficients in the velocity field generated by a neutral squirmer, uB̄1

j , are given by Eq. (A1) in
Appendix A.

For a pusher (β < 0) or puller (β > 0), we can decompose the velocity field as u j = uB̄1
j + βuB̄2

j ,

where uB̄2
j is the contribution from the B̄2 mode. The coefficients in uB̄2

j are given by Eq. (A2) in
Appendix A.

We discuss several features of the velocity field. Firstly, not only are the propulsion speeds
of the droplet and the squirmer independent of the surface shear viscosity, but Eqs. (A1) show
that the velocity field around a neutral squirmer (B̄1 mode) is also unaffected by surface shear
viscosity, depending solely on the surface dilatational viscosity. Secondly, unlike the B̄1 mode flow
around a neutral squirmer, the presence of surface shear viscosity does affect the flow around a
pusher/puller (the B̄2 mode), as indicated by Eqs. (A2). Furthermore, the analytical expressions
reveal that the dependence of the velocity field on surface viscosities always appears through the
combined term 3Bqd + 2Bqs, implying that surface shear and dilatational viscosities affect the flow
around a pusher or puller in the same manner physically. Therefore, without loss of generality,
we focus on visualizing the flow inside and outside drops with surface dilatational viscosities
in Fig. 5; incorporating surface shear viscosities either has no effect (for the case of a neutral
squirmer, β = 0) or leads to qualitatively the same effects to those observed with surface dilatational
viscosities. In Fig. 5, we compare the flow patterns associated with droplets with (right sides,
Bqd = 100) and without (left sides, Bqd = 0) surface dilatational viscosities. It is observed that
the magnitude of the exterior flow is reduced for droplets with surface dilatational viscosities.
This reduction is also evident from the coefficients in the exterior flows given by Eqs. (A1e)
and (A1f) and Eqs. (A2e) and (A2f), which show a decrease in magnitude with increasing Bqd .
We also observe that the effects of surface dilatational viscosity on the flow pattern are most
pronounced for intermediate values of β [e.g., β = −1,−3 in panels (b) and (c)]. For β = 0
[neutral squirmer, panel (a)] and a stronger pusher β = −5 [panel (d)], the flow patterns exhibit
qualitatively similar features regardless of the presence of surface dilatational viscosities. We
present only the flow patterns for pushers, as the flow patterns for pullers are qualitatively similar
but inverted.
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(a) (b)

(c) (d)

FIG. 5. The flow field inside and outside a liquid droplet (interface indicated by the green line) enclosing a
squirmer with (a) β = 0, (b) β = −1, (c) β = −3, and (d) β = −5. In each panel, the left side (blue) displays
the flow for a clean drop (Bqd = 0), whereas the right side (red) displays the flow for a drop with surface
dilatational viscosity (Bqd = 100). In all cases, we set λ = 1, b = 1.5, and Bqs = 0. The colormap corresponds
to the magnitude of the dimensionless velocity interior ( j = 1) and exterior ( j = 2) to the droplet.

We also examine the dependence of the velocity on the droplet interface, u(r = b) = us, on
the surface viscosities. For a neutral squirmer, uB̄1

s = uB̄1
r,ser + uB̄1

θ,seθ , the normal and tangential
components of the interfacial velocity are, respectively, given by

uB̄1
r,s = UD cos θ, uB̄1

θ,s = F1

2b3
sin θ. (21)

For a pusher or puller, the interfacial velocity (uB̄1
s + βuB̄2

s ) has the additional contribution uB̄2
s =

uB̄2
r,ser + uB̄2

θ,seθ due to the B̄2 mode, where

uB̄2
r,s = 0, uB̄1

θ,s = F2

b4
sin θ cos θ. (22)

We first remark that the normal component of the velocity in Eqs. (21) arises exclusively from the
rigid body translation of the droplet at a speed of UD. In other words, in a reference frame moving
with the droplet, the interfacial velocity would be entirely tangential. Secondly, from the expressions
of the coefficients F1 [Eq. (A1f)] and F2 [Eq. (A2f)], we observe from Eqs. (21) and (22) that the
magnitude of the interfacial velocity reduces with increasing values of Bqd (and Bqs in the case of
the B̄2 mode), as visualized in Fig. 6. This illustrates the effect of surface viscosities in immobilizing
the droplet interface, approaching the limit of a rigid spherical boundary as Bqd → ∞.

033104-9



NGANGUIA, ADEGBUYI, UFFENHEIMER, AND PAK

(a) (b)

FIG. 6. Tangential interfacial velocity on the droplet due to the (a) B̄1 and (b) B̄2 modes for different values
of Bqd . In all cases, b = 1.5 and Bqs = 0.

C. Power consumption

We examine here the energetic cost associated with squirming inside a drop with surface
viscosities. We calculate the power consumption, which is equal to the rate of work done by the
squirming motion on the surface of the squirmer S, as

P = −
∫

S
T1 · n · u1dS, (23)

and display the results in Fig. 7 for a neutral squirmer [β = 0, panel (a)] and a pusher or puller
[β = ±3, panel (b)]. For all cases considered in Fig. 7, the presence of surface viscosities (increasing
Bqd and/or Bqs) leads to an increase in the power consumption by all squirmers, compared to
the results for clean drops [14] (gray dotted lines). For neutral squirmers [Fig. 7(a)], since the
flow field is independent of surface shear viscosity (Bqs), the power consumption increases only

(a) (b)

FIG. 7. Power consumption by the squirmer inside the droplet (P) scaled by the corresponding power
consumed in an unbounded fluid (P0) as a function of Bqd for (a) β = 0 (neutral squirmer) and (b) β = ±3
(pusher or puller), under different relative sizes of the drop (see legends). The gray dotted lines represent the
corresponding results for the clean droplet case (Bqd = Bqs = 0) given in Reigh et al. [14]. In all cases, λ = 1.
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with the surface dilatational viscosity (Bqd ). For pushers and pullers [Fig. 7(b)], both surface
shear and dilatational viscosities increase their power consumption. Since the surface shear and
dilatational viscosities enter the flow field through the term 3Bqd + 2Bqs, an increase in surface
shear viscosity has physically the same impact on power consumption as an increase in surface
dilatational viscosity. Figure 7(b) shows that as Bqd increases, the effect of surface dilatational
viscosity increasingly dominates over that of surface shear viscosity. Consequently, the curves
corresponding to Bqs = 0 (thicker lines) and Bqs = 10 (thinner lines) converge as Bqd becomes
large.

Taken together, the results from Secs. III A and III C indicate that, compared to the case of a
clean drop, a squirmer inside a drop with surface viscosities not only swims slower (Fig. 2) but also
consumes more power (Fig. 7).

IV. CONCLUDING REMARKS

In this work, we explored the effects of surface viscosities on the motion of a liquid droplet
enclosing a squirmer. Our study extends previous studies by incorporating both surface shear and
dilatational viscosities, as well as considering swimmers of finite sizes, to uncover how these
parameters influence swimming kinematics and energetics. The spherical and concentric geometric
configuration of the problem setup allows exact, analytical results via Lamb’s general solution.
Our results indicate that the propulsion speeds of both the droplet and the enclosed squirmer are
independent of surface shear viscosity, depending solely on surface dilatational viscosity. We note
some measured values of surface dilatational viscosities [39], which can range from magnitudes
on the order of 10−3 mN s m−1 for some interfaces with adsorbed low molecular weight surfactants
[40] to 100 mN s m−1 or even larger for interfaces with adsorbed proteins [41,42], polymers [43,44],
and lipids [45,46]. For an active particle with a size of r1 = 10 μm and a bulk viscosity of
μ2 = 10−2 Pa s, the dilatational Boussinesq number can range as Bqd = O(10–106). In the high
Bqd regime, our results show a substantial reduction in the speed of the enclosing droplet, and the
largely immobilized interface behaves similarly to rigid confinement. These findings suggest that
deriving droplet propulsion from an enclosed active particle may not be an effective strategy in
systems with high surface dilatational viscosities. In terms of the surrounding flows, surface shear
viscosity does not impact the flow field generated by a neutral squirmer, whereas the combined effect
of shear and dilatational viscosities (through the term 3Bqd + 2Bqs) influences the flow generated
by a pusher or puller. This latter feature implies that surface shear and diltational viscosities have
the same physical impacts on the flow field and hence power consumption of the squirmer. Overall,
the presence of surface viscosities leads to slower swimming speeds and higher power consumption
for the squirmer compared to a clean droplet scenario.

We also compared our findings on the current active droplet problem with classical results
on a translating droplet incorporating surface viscosities. Both problems share the feature that
the translational speeds depend solely on the surface dilatational viscosity, not on the surface
shear viscosity. In the classical translating droplet problem, the effect of surface viscosity can be
effectively treated as an equivalent increase in interior viscosity. However, caution is needed when
extending this notion to other problems, as it may lead to qualitatively different predictions, as
illustrated by the example we provide here. Specifically, in our active droplet problem, while surface
dilatational viscosity slows down both the enclosed squirmer and the enclosing droplet, an increase
in interior viscosity actually leads to speed enhancement.

The exact solutions presented in this work can be employed for validating numerical simulations
of related problems and can serve as a benchmark for future studies. We remark on several potential
extensions of our work. Firstly, the concentric configuration considered here demonstrates that the
droplet and the squirmer exhibit different speeds, which generally results in eccentric configurations
as the swimming motion evolves. Analytical treatments using bispherical coordinates and numerical
simulations are currently underway to examine whether the main features revealed in this study are
retained in more general configurations. Secondly, while this work focuses on the impact of surface
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viscous stresses, future research could explore more complex interfacial behaviors, including how
surface viscous stresses, together with Marangoni stresses due to surface concentration inhomo-
geneity [20,47], influence propulsion behavior. Finally, a small-deformation analysis or numerical
simulations examining the impacts of droplet deformability on the propulsion dynamics represents
another direction for future studies. Overall, our findings represent a first step towards understanding
how complexities arising from realistic biological or environmental systems impact the propulsion
behaviors of active droplets driven by enclosed microswimmers, paving the way for their potential
applications in these complex environments.
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APPENDIX A: COEFFICIENTS IN THE VELOCITY FIELD INTERIOR
AND EXTERIOR TO THE DROPLET

The coefficients in the velocity field generated by a neutral squirmer, uB̄1
j , are given by

A1 = 2[b(1 − λ) + Bqd ]

b6(3λ + 2) + 2(b5 − 1)Bqd + 2b(λ − 1)
, (A1a)

B1 = 10b2[b(λ − 1) − Bqd ]

b6(9λ + 6) + 6(b5 − 1)Bqd + 6b(λ − 1)
, (A1b)

C1 = 0, (A1c)

D1 = 2b5[b(3λ + 2) + 2Bqd ]

b6(9λ + 6) + 6(b5 − 1)Bqd + 6b(λ − 1)
, (A1d)

E1 = 0, (A1e)

F1 = 10b6λ

b6(9λ + 6) + 6(b5 − 1)Bqd + 6b(λ − 1)
, (A1f)

with other coefficients in Eqs. (8)–(11) being zero.
The coefficients in uB̄2

j are given by

A2 = 2

(b − 1)2W2
[−5b[(b2 + b)(3b2 + 2λ − 2) + 2(λ − 1)]

− 2(b − 1)(3b3 + 6b2 + 4b + 2)(3Bqd + 2Bqs)], (A2a)

B2 = 2

(b − 1)2W2
[5b[(b2 + b)[5b4 − 2b2 + 2(b4 + b2 + 1)λ − 2] + 2(λ − 1)]

+ 2(b − 1)(5b5 + 10b4 + 8b3 + 6b2 + 4b + 2)(3Bqd + 2Bqs)], (A2b)

C2 = 2b3

(b − 1)2W2
[5b{b[−2(b5 + b4 + b3 + b2 + b)(λ + 1) − 2λ + 5] − 2λ + 5}

− 2(b − 1)(2b5 + 4b4 + 6b3 + 8b2 + 10b + 5)(3Bqd + 2Bqs)], (A2c)

D2 = 2b5

(b − 1)2W2
[5b{b[2(b3 + b2 + b)(λ + 1) − 3] − 3}

+ 2(b − 1)(2b3 + 4b2 + 6b + 3)(3Bqd + 2Bqs)], (A2d)
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E2 = 10λb4(3b4 + 9b3 + 11b2 + 9b + 3)

W2
, (A2e)

F2 = −10λb6(3b4 + 9b3 + 11b2 + 9b + 3)

W2
, (A2f)

W2 = 2(b − 1)(4b6 + 16b5 + 40b4 + 55b3 + 40b2 + 16b + 4)(3Bqd + 2Bqs)

+ 5b[b[(4b6 + 12b5 + 24b4)(λ + 1) + 30b3λ + 15b3 + 30b2λ − 15b2

+ 24b(λ − 1) + 12(λ − 1)] + 4(λ − 1)], (A2g)

with other coefficients in Eqs. (8)–(11) being zero.

APPENDIX B: EFFECT OF SWIMMING WITH A RADIAL SQUIRMING MODE

While previous studies have largely focused on squirmers with tangential surface velocities, we
investigate the effect due to a radial squirming motion in this appendix and compare the results
with those for a clean droplet scenario in Reigh et al. [14]. Similar to tangential squirming motion,
among all modes of radial surface velocity distributions expressed as usq = ∑∞

n=0 ĀnPn(cos θ )er ,
only a single mode (the Ā1 mode) contributes to swimming [23,24,33]. We therefore extend the
analysis in the main text to include the effect due to the Ā1 mode. Specifically, under the same
nondimensionalizations, the boundary condition for the radial component of the velocity on the
squirmer surface, Eq. (12), becomes

ur,1(r = 1) = (α + US ) cos θ, (B1)

where α = Ā1/B̄1 includes the effect due to the radial squirming mode. Following the same
approach outlined in the main text, the propulsion speed of the squirmer is calculated as

US = 1

b6(9λ + 6) + 6(b5 − 1)Bqd + 6b(λ − 1)
{2[6α + (2 − α)b5 − 5(α + 1)b2 + 3]Bqd

+ (2 − α)b6(3λ + 2) + 2b[5(α + 1)b2 + 6(2α + 1)](λ − 1)}, (B2)

whereas the speed of the enclosing droplet is given by

UD = 10(α + 1)b3λ

b6(9λ + 6) + 6(b5 − 1)Bqd + 6b(λ − 1)
· (B3)

The speeds of both the squirmer and the droplet remain unaffected by surface shear viscosity
(independent of Bqs) when radial squirming motion is present. When α = 0, the above results
reduce to those with purely tangential squirming motion given by Eqs. (19) and (20) in the main
text. A purely tangential squirmer consistently swims faster than its enclosing droplet (UD < US).
However, as indicated by Eq. (B3), incorporating radial squirming increases the droplet’s speed,
allowing the possibility of a coswimming state where the squirmer and droplet move at the same
speed (UD = US) in a concentric configuration [14].

The critical value, α = αC , at which coswimming occurs can be determined as

αC = 2[(2b5 − 5b2 + 3)Bqd + b[b5(3λ + 2) − 5b2 − 3λ + 3]]

b6(3λ + 2) + 10b3 + 2(b5 + 5b2 − 6)Bqd + 12b(λ − 1)
, (B4)

giving rise to a coswimming speed of

UC = 10b3λ

b6(3λ + 2) + 10b3 + 2(b5 + 5b2 − 6)Bqd + 12b(λ − 1)
· (B5)

The above results reduce to the case of a clean droplet [14] when Bqd = 0. Equation (B5) shows
that surface dilatational viscosity causes a monotonic reduction in the coswimming speed.
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