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Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
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In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant
unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the
vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from
the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the
externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane
potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison
against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives
better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio,
vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis
on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes.
Comparisons show that the spheroidal model gives better agreement with experimental observations.
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I. INTRODUCTION

Biological cells (such as erythrocytes, yeast cells) are found
to orient themselves parallel or perpendicular to the direction
of an external electric field [1–3], depending on membrane
elasticity, coupling between the membrane and the cytoskele-
ton, excess membrane area, and also solution conductivity
[4–6]. Due to the complexity of biological cells, the electrode-
formation and electrodynamics of vesicles (closed lipid bilayer
membranes) have been intensively pursued as a paradigm for
understanding how a biological cell behaves under an electric
field. Studies on vesicles also show that they take on different
equilibrium shapes depending on the frequency of the imposed
alternating current (ac) electric fields and the mismatch in
fluid conductivities [7–10]. Changes in vesicle orientation,
dielectrophoresis, and electrorotation have also been observed.
Under direct current (dc) electric fields, both vesicles and
biological cells tend to undergo large deformations with aspect
ratios reaching 10. The permeabilization of vesicles mem-
branes by electric fields has also generated a lot of practical and
modeling interest, especially in the biotechnology industry.
Electroporation, the process of perforating the membrane
by applying an (often dc) electric field, has been proposed
as a method for delivering molecules into living organisms
[11–19]. Most recently, electroporation has been used for mea-
surements of various properties of the cell membranes [19,20].

The earliest theoretical models of vesicle electrodeforma-
tion [21,22] were based on minimizing the total surface energy,
consisting of the membrane mechanical energy (from tension
and bending) and electrical energy (from Maxwell stresses).
These models focus on a conductivity ratio ≈1, and as a
result the models were only able to predict prolate shape.
An extension of these models [23,24] allows for large con-
ductivity mismatch and predicts the various shapes observed
experimentally [10], even though poor quantitative agreement
with the experiments is found. To our knowledge, Hyuga
et al. [25,26] proposed the first theory beyond the surface
energy-minimization approach. Sadik et al. [27] modified this
approach to model the deformation of spheroidal vesicles
under strong electric fields.

Vlahovska et al. [28] proposed a perturbative method to
study the dynamics and deformation of a nearly spherical
vesicle subject to weak ac electric fields. Assuming small
asphericity, the transmembrane potential for a dielectric
spherical shell in ac fields is used in their analyses. The
small-deformation results are in qualitative agreement with
experiments in terms of shape elongation and the transition
frequency between prolate and oblate vesicle. Yet the small-
deformation model does not apply to vesicles under moderate
and strong electric fields, where deformations are well beyond
small asphericity [7]. Zhang et al. [29] proposed a spheroidal
model to study the transient dynamics of highly deformed
vesicles under strong dc electric fields. Assuming that vesicles
remain spheroidal under a slowly varying dc electric field,
which is well supported by experimental findings in [7,27,30],
their spheroidal results are in quantitative agreement with
experimental data [29] in terms of the vesicle aspect ratio
and its response to an electric pulse.

In this work, we extend Zhang et al.’s spheroidal model [29]
to study the equilibrium electrodeformation of a vesicle in
ac fields. Unlike the dynamical approach for solving the
transmembrane potential in [29], we develop a model for
the equilibrium transmembrane potential for a spheroidal
dielectric shell in ac fields. The article is organized as follows:
In Sec. II we formulate the problem. In Sec. II A we present the
transmembrane potential for a spheroidal dielectric shell; we
then derive the governing equation in Sec. II B. Our findings are
summarized in Sec. III: We first present a comparison between
the spheroidal model and the small-deformation theory for
a prolate vesicle; in Sec. III A we consider the dependence
of vesicle deformation, transmembrane potential, and electric
stresses on the field frequency. In Sec. III B we show the
predictions, as well as comparison with experiment for the
shape elongation and transition frequency.

II. PROBLEM FORMULATION

Figure 1 illustrates a spheroidal vesicle enclosing an interior
dielectric fluid (μi,εi,σi) suspended in another dielectric
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FIG. 1. (Color online) Illustration of a vesicle suspended in a
leaky dielectric fluid. The typical membrane thickness is d = 5 nm.
The bottom inset shows the lipid bilayer structure of the membrane,
and the top inset shows the three dielectric spheroidal shells with
electric impedance defined in Eq. (9).

fluid with (μe,εe,σe). μ, ε, and σ are the fluid viscosity,
dielectric permittivity, and conductivity, respectively, and the
subscript denotes interior (i) or exterior (e) fluids. Typical
values of the fluid viscosity (larger than 10−3 Pa s) and
vesicle size (several μm’s) indicate that the fluid inertia are
negligible, consequently the flow velocity in both interior
and exterior fluids is governed by the incompressible Stokes
equations

μj∇2uj = ∇pj , ∇ · uj = 0, (1)

where p is the fluid pressure and u is the fluid velocity, with the
subscript j = e for exterior fluid or j = i for interior fluid. The
boundary conditions for the velocity are u = 0 in the far-field
and u = dx

dt
on the vesicle membrane, with x denoting the

vesicle membrane location. The balance of stresses on the
membrane gives

n · �T + S� = τmem, (2)

where �f � ≡ fe − fi denotes the difference between exterior
and interior and n is the outward normal unit vector on the
membrane. T = −pI + μ[(∇u)T + ∇u] is the hydrodynamic
stress with I the identity tensor, and S = ε �E�E − ε

2 (�E · �E)I is
the Maxwell stress tensor. The membrane traction consists of
membrane tension and bending forces,

τmem = 2σhH n − κ
(
4H 3 − 4KH + 2∇2

s H
)

n, (3)

where σh, κ , H , and K are the membrane tension, bending
rigidity, mean curvature, and Gaussian curvature, respectively.
The (homogeneous) membrane tension is related to the excess
area � ≡ A

4πr2
0

− 1 as

σh = s0 exp

[
8πκ�

kBT

]
, (4)

where s0 = σ0/(κ/r2
0 ) is the dimensionless membrane tension.

The electric field is harmonic (�E = �E0e
iωt ) and irrotational,

which implies that �E = −∇φ with φ the electric potential
that satisfies the Laplace equation both inside and outside the

vesicle,

∇2φj = 0. (5)

Across the membrane, the electric potential has a jump

φi − φe = �φ, (6)

due to the capacitive nature of the vesicle membrane. The
induced charges on the two sides of the membrane cause a
discontinuity in the displacement vector,

�ε �E · n� = Q(ω,t), (7)

where Q is the induced charge density. If we neglect the effects
of charge convection along the membrane, the electric current
conservation at the interface gives

�σ �E · n� = −dQ

dt
≈ −∂Q

∂t
. (8)

Substituting Eq. (7) into Eq. (8) yields the continuity condition

�−K∇φ · n� = 0, Kj = σj + iωεj , (9)

where the dielectric properties are characterized by the
complex electrical impedance. j can be i, m, and e, referring
to the interior, membrane, and exterior of the vesicle. σj ,
εj , and ω are the conductivity, permittivity, and electric
field frequency, respectively. For the vesicle’s impedance,
Km = Gmd + iCmd, where Gm and Cm are the membrane
conductance and capacitance.

The governing equations are nondimensionalized by scal-
ing length to r0, time to the charging time tc = εe/σe, the
electric potential to E0r0, bending force and membrane tension
to κ/r2

0 , and electric stresses to εeE
2
0 . For example, the resultant

dimensionless complex conductivities are given by

Ke = 1

x
+ i

ω

x
, Ki = σr

x
+ i

ωεr

x
, Km = σm

σex
+ iω

εm

εex
,

(10)

where the conductivity and permittivity ratios are defined as
σr = σi

σe
and εr = εi

εe
. x = d

r0
is the dimensionless thickness.

σm and εm are the membrane conductivity and permittivity,
respectively.

A. Transmembrane potential

In the leaky dielectric framework, cations and anions in
the bulk are assumed to neutralize instantaneously, while net
surface charge can be induced on the interface between fluids
of mismatched dielectric conductivity and/or permittivity.
Because the membrane is impermeable, the induced surface
charges accumulate on either side of the membrane, giving
rise to a transmembrane potential across the membrane. In the
past studies of vesicles subjected to ac electric fields [28,31],
the transmembrane potential for a spherical shell was often
used [32–34]. However, the transmembrane potential depends
on the geometry of the vesicle, and even small deviations from
an initial spherical shape may induce noticeable changes in
the potential jump [35].

Analytical studies on the induced transmembrane potential
for spheroidal vesicles reveal that the membrane thickness
is nonuniform due to the alignment of cell boundaries with
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spheroidal surfaces [36,37]. Klee and Plonsey [38] used nu-
merical simulations to compute the spheroidal potential jump,
while Gimsa et al. [35,39,40] devised a resistor-capacitor
(RC) approach to determine the induced transmembrane
potential. Later, Konik [41] showed that small variations in
the membrane thickness of spheroidal cells have no effects on
the transmembrane potential.

Here we developed an analytical model of the transmem-
brane potential for a spheroidal shell in an ac electric field.
The analytical solution is based on the truncated expansion
in Gegenbauer functions for the electric potential in the
prolate spheroidal coordinates (ξ,η), which are related to the
cylindrical coordinates (r,z) as

z = cξη, r = c
√

(ξ 2 − 1)(1 − η2), (11)

where c ≡ √
b2 − a2 is the semifocal length. Surfaces of

constant ξ ∈ [1,∞) are spheroids while surfaces of constant
η ∈ [−1,1] are hyperboloids. As such, the prolate vesicle
surface is given by ξ = ξ0(t) ≡ a

c
.

The electric potential exists in three domains: interior (i),
exterior (e), and the membrane (m); see the inset in Fig. 1.
The transmembrane potential is derived by solving Laplace
equations in all three domains as follows. We first assume
that the potential in each domain takes the truncated form
[29,42–44]

φj = [αjξ + βjQ1(ξ )]η, j = i,e,m, (12)

where Q1 is the Legendre polynomial of the second kind.
αj and βj are obtained from the boundary conditions. For
example, αe = −c and βi = 0 from the far-field and interior
boundary conditions. The remaining coefficients βe, αm, βm,
and αi are determined from boundary conditions on the
membrane; see Appendix B. Substituting the coefficients in
Eq. (12), we obtain the transmembrane potential

�φ = φi(ξi) − φe(ξe) ≡ Vmη,

where Vm = cF (ω)/D(ω) is the “amplitude” of the potential,
D(ω) is given by Eq. (B7), and

F (ω) = −Ke(Qe − ξeQ
′
e)[(Ki − Km)ξiQe

+ (−Kiξe + Kmξi)Qi + Km(ξe − ξi)ξiQ
′
i]. (13)

The functions Qe ≡ Q1(ξe),Qi ≡ Q1(ξi),Q′
e ≡ Q′

1(ξe),
Q′

i ≡ Q′
1(ξi).

Figure 2 provides a comparison of the transmembrane
potential magnitude Vm between the spherical shell (dashed
lines) and spheroidal shells (dash-dotted lines). Thick lines
are for prolate with σr = 1.5, and thin lines are for oblate
with σr = 0.5. At low frequencies, the spherical shell potential
reaches the maximum value Vm = 3/2 while for the spheroidal
shell Vm plateaus to a maximum that depends on the vesicle
aspect ratio a/b: The larger the shape elongation, the larger the
maximum transmembrane potential, in agreement with earlier
findings about the dependence of the potential on shape [35].
We note that by solving the Laplace equation in each dielectric
spheroidal shell, the η dependence in our spheroidal shell is
the same as that in the spherical shell, while Gimsa et al.’s
model cannot capture the η dependence.
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FIG. 2. (Color online) Magnitude of transmembrane potential
calculated from Eq. (13) for various aspect ratios. The thick (thin)
dash-dotted lines are prolate, σr = 1.5 (oblate, σr = 0.5) predictions,
and the dashed line is the spherical shell potential. The inset shows
Vm for two prolate cases.

B. Electrohydrodynamic deformation

With the transmembrane potential for the spheroidal shell
in Eq. (13), we can now compute the electric potentials in the
interior and exterior of the vesicle as

φe = [−cξ + αQ1(ξ )] ηeiωt , (14)

φi = βξηeiωt , (15)

where α and β are obtained by satisfying the boundary
conditions in Eqs. (6) and (9):

α = cξ0(Kr − 1) − KrVm

KrQ1 − ξ0Q
′
1

, β = c(ξ0Q
′
1 − Q1) − VmQ′

1

KrQ1 − ξ0Q
′
1

,

(16)

with Kr = Ki

Ke
. We write the electric field �E as the real part

of E : �E = 1
2 ( �E + �E∗) (where the asterisk denotes complex

conjugation), and substitute it into the Maxwell stress [45],

S(ω) = ε

4
( �E �E∗ + �E∗ �E − |E |2I)

+ ε

4

(
�E �E + �E∗ �E∗ − 1

2
[ �E · �E + �E∗ · �E∗]I

)
. (17)

In the above equation, the first group on the right-hand side is
the time-averaged Maxwell stress tensor, and the second group
is the time-dependent (harmonic) terms. In the following,
we consider only the time-independent terms for equilibrium
vesicle shapes.

We focus on the axisymmetric incompressible fluid velocity
field, which can be computed from a stream function ψ for both
inside and outside the vesicle. The stream function satisfies the
equation

(E2)2ψ = 0, with

E2 = 1

c2(ξ 2 − η2)

[
(ξ 2 − 1)

∂2

∂ξ 2
+ (1 − η2)

∂2

∂η2

]
. (18)
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The general solution for the stream function takes the form
[46,47]

ψ = g0(ξ )G0(η) +
∞∑

n=2

[gn(ξ )Gn(η) + hn(ξ )Hn(η)], (19)

where Gn and Hn are the Gegenbauer functions of the first
and second kind, respectively. Detailed expressions of the
functions gn and hn can be found in [46,47]. In this work,
we seek a truncated solution [29,42–44]

ψe = [
A1

3H1(ξ ) + A3
3H3(ξ )

]
G3(η), (20)

ψi = [
B3

3G3(ξ ) + B5
3G5(ξ )

]
G3(η). (21)

Four boundary conditions are needed to determine the four
coefficients A1

3, A3
3, B3

3 , and B5
3 . Following the procedures

in [29,48], we project the stress balance onto the corresponding
velocities to close the system:∫

ξ=ξ0(t)
u[�Tξη� + �Sξη�]ds = 0, (22)∫

ξ=ξ0(t)
v[�Tξξ � + �Sξξ � − τmem]ds = 0, (23)

where τmem = τmem · n. In prolate spheroidal coordinates,

Tξξ = 2μ

(
∂v

hξ∂ξ
+ u

hξhη

∂hξ

∂η

)
,

(24)

Tξη = μ

(
∂(u/hη)

∂ξ

hη

hξ

+ ∂(v/hξ )

∂η

hξ

hη

)
,

Sξξ = ε

4
(EξE∗

ξ − EηE∗
η ), Sξη = ε

4
(EξE∗

η + EηE∗
ξ ), (25)

where hξ and hη are the scale factors in the spheroidal
coordinates, and Eξ = − ∂φ

hξ ∂ξ
and Eη = − ∂φ

hη∂η
are the normal

and tangential electric field. The excess area in Eq. (4) can be
expressed in terms of ξ0 as

� = 1
2

(
1 − ξ−2

0

)−2/3[
1 − ξ−2

0 +
√

ξ 2
0 − 1 arcsin

(
ξ−1

0

)] − 1.

(26)

The above derivation can be modified for the oblate case
with appropriate transformation: ξ → iλ and c → −ic̄, with i

the imaginary unit. Thus the oblate spheroidal coordinates
(λ,η) are related to the cylindrical coordinates (r,z) as
z = c̄λη, r =

√
(λ2 + 1)(1 − η2), with c̄ ≡ √

b2 − a2 for λ ∈
[0,∞) and η ∈ [−1,1]. Surfaces of constant λ are oblate
spheroids while surfaces of constant η are hyperboloids.
Consequently, in oblate coordinates,

E2 = 1

c̄2(λ2 + η2)

[
(λ2 + 1)

∂2

∂λ2
+ (1 − η2)

∂2

∂η2

]
,

the electric potential coefficients and excess area take the
following forms:

α = c̄λ0 (Kr − 1) − KrVm

KrQ1 − λ0Q
′
1

,

(27)

β = i
[c̄Q1 + (Vm − cλ0)Q′

1]

KrQ1 − λ0Q
′
1

,

� = 1

2

(
1 + λ−2

0

)−2/3 [√
λ−2

0 + λ−4
0

+ arctanh
[(

λ2
0 + 1

)−1/2]] − 1. (28)

Coefficients A1
3, A3

3, B3
5 , and B5

5 are expressed in terms
of χ (with χ = ξ0 for prolate and λ0 for oblate) through
stress balance [Eqs. (22) and (23)] and velocity continuity
on the membrane; for details of the derivation, see [29].
To close the system, we use the kinematic condition at the
membrane, which gives the normal velocity in terms of χ , and
we finally obtain the governing equation for the shape function
as

dχ

dt
=

δ
[
QNf21 + QT

f11(μrf22+f23)
μrf14+f15

− Ca−1
E (σhf24 + fκ )

]
2
3 (μrf25 + f26)

,

(29)

QN = ± 1

2c2

[
2c2 − 2cτ3(Q′

1 + Q1/χ )

+ (
τ 2

3 + τ 2
4

)[
Q′2

1 + (Q1/χ )2
] − 2

(
τ 2

1 + τ 2
2

)/
εr

]
,

(30)

QT = 1

2c2

[
c2χ + (

τ 2
3 + τ 2

4

)
Q1Q

′
1

− cτ3(Q1 + χQ′
1) − (

τ 2
1 + τ 2

2

)
χ/εr

]
, (31)

where the symbols ± designate prolate (+) or oblate (−).

CaE = εer
3
0 E2

0
κ

is the electric capillary number, and δ = tc
tEHD

,
with tEHD = μi

εeE
2
0

the characteristic electrohydrodynamics

(EHD) time scale. The functions f11–f26,fκ are given by
Eqs. (A1)–(A11) for the prolate shape and Eqs. (A13)–
(A23) for the oblate shape. Setting dχ

dt
= 0, the steady-

state equilibrium shape is obtained by solving the nonlinear
equation,

QNf21 + QT

f11(μrf22 + f23)

μrf14 + f15
= Ca−1

E (σhf24 + fκ ). (32)

Equation (32) shows that an equilibrium shape is achieved
when the electric forces (on the left) are balanced by the
tension and bending forces (on the right). The viscous
effects are manifested in terms that involve the viscosity
ratio μr .

III. RESULTS

A. Comparison with small-deformation theory

The shape elongation a/b = ξ0/
√

ξ 2
0 − 1 for prolate while

a/b = λ0/
√

λ2
0 + 1 for oblate. Figure 3(a) shows the equi-

librium shape elongation from the spheroidal model (solid
lines) and the small-deformation theory [28] (dashed lines) for
σr = 1.5, CaE = 6837 and s0 = 1 (figures 6 and 7 in [28]). We
found that, for the same membrane tension s0, the spheroidal
model predicts larger deformation than the small deformation
theory at a given frequency. The corresponding transmembrane
potential magnitude Vm and the electric stresses (the normal
component QN and the tangential component QT ) are shown
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FIG. 3. (Color online) Equilibrium deformation vs frequency ω

for a prolate vesicle with σr = 1.5, CaE = 6837, and s0 = 1. In (a)
and (b), solid curves are from the spheroidal model and dashed curves
are from the small-deformation model. (c) Normal (thin curve) and
tangential (thick curve) electric stresses from the spheroidal model
[Eqs. (30) and (31)].

in Figs. 3(b) and 3(c), respectively. As we expect from
Sec. II A, the membrane potential from the spheroidal model is
higher at low frequencies. The decrease in membrane potential
at ω ≈ 5 × 10−3 in (b) coincides with an increase in the
tangential electric stress and a decrease in the electric pressure
in (c).

B. Comparison with experiment

1. Equilibrium shape elongation versus frequency

Experiments [10] show that the vesicle takes a spherical
shape at equilibrium under very high frequencies (ω > 103)
when the transmembrane potential is zero. At moderate
frequencies (ω < 102), the equilibrium vesicle shape can be
prolate (for σr > 1) or oblate (for σr < 1). In particular, the
equilibrium oblate vesicle for σr < 1 crosses over to the
prolate equilibrium shape at low frequencies, ω < 10−2. These
experimental findings are summarized (symbols) in Figs. 4
and 5, where we also compare the spheroidal model (solid
lines) and the small-deformation model [28] (broken lines).

TABLE I. Fitted values of s0 = σ̄0r
2
0 /κ for the experimental data

in [10] with εr = 1, μr = 1, κ = 10kBT , and E0 = 0.2 kV/cm.

s0 used in s0 used in
spheroidal small-deformation

Experiment model model

σr = 4.3, r0 = 21.6 μm 43 000 3000
σr = 1.7, r0 = 27.5 μm 80 000 20 000
σr ≈ 1 (Pr), r0 = 27.5 μm 1000 1
σr ≈ 1 (Ob), r0 = 37.5 μm 10−6 10−7

σr = 0.5, r0 = 12.8 μm 1000 100
σr = 0.4, r0 = 27.2 μm 70 1

Following the approach in [28], we use s0 as a fitting parameter
(see Table I) and fix the bending stiffness κ = 10kBT . We
note that s0 used in the spheroidal model is at least an
order of magnitude larger than in small deformation. Nev-
ertheless, they are comparable to values reported in previous
work [30].

Figure 4(a) is for σr > 1 [“transition” (1) in [10]] where the
equilibrium shape elongation is always greater than (prolate)
or equal to (spherical) 1. We observe better agreement from
the spheroidal model for σr = 1.7, while for σr = 4.3 the
spheroidal results are in better agreement except for ω > 10.
Figure 4(b) is for σr < 1 [“transition” (4) in [10]], where
the equilibrium shape can cross over from spherical at high
frequencies ω > 20 to oblate at intermediate frequencies
∼ 3 × 10−3 � ω �∼ 1, and to prolate at low frequencies
10−4 � ω �∼ 3 × 10−3. In this case, neither model agrees
with the experiments for 1 > ω > 0.5, where the equilibrium
vesicle shape crosses over from oblate to spherical as ω

increases.
In “transition” (3) of [10], where σr is close to unity, the

value of σr determines the shape of the vesicles: prolate
for σr > 1 and oblate for σr < 1. Figure 5(a) shows the
comparison between models and experiments for σr ≈ 1. Next
we focus on the effect of bending rigidity on the equilibrium
vesicle shape. For experiments in [10], the bending stiffness
varies between 4 × 10−20 J [30] and 2.3 × 10−19 J [49].
Recent measurements on SOPC bilayer membranes [50]
reported a bending stiffness as low as 7 × 10−21 J.
Figure 5(b) shows a comparison between theories and
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FIG. 4. (Color online) Comparison between the experimental data of Aranda et al. [10] (symbols), the small-deformation theory (dashed
curves), and the current model (solid curves). (a) σr > 1, (b) σr < 1.
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FIG. 5. (Color online) Comparison between the experimental data of Aranda et al. [10] (symbols), the small-deformation theory (dashed
curves), and the spheroidal model (solid curve). (a) σr ≈ 1, (b) σr = 4.5.

experiments for σr = 4.5 and with various values of the
bending stiffness. Both theories are very sensitive to
changes in the bending stiffness: We found good agreement
with experiments up to κ = 4 × 10−20 J for the spheroidal
model and up to κ = 10−20 J for the small deformation.
Beyond these values, the two models overestimate the
deformation.

Vesicles take various equilibrium shapes at different fre-
quencies and conductivity ratios. Aranda et al. [10] constructed
a morphological diagram on the ω-σr plane by performing a
series of experiments using over 60 vesicles ranging from 4 to
50 μm in size. They subjected all these vesicles to an ac field
at a frequency ranging between ≈2 kHz and 20 MHz while
varying the conductivity of the external fluid phase with fixed
conductivity inside the vesicles.

Figure 6 shows the shape variations in the ω-σr plane.
The experimental data points indicate the value at which
the vesicle changes shape as frequency increases. Figure 6
also compares the predictions from the spheroidal model, the
small-deformation theory, and the result using the energy-
minimization approach [23]. The spheroidal and small-
deformation models give agreement with experiments: The
prolate-to-oblate and prolate-to-sphere frequencies increase
with σr , while the oblate-to-sphere frequencies decrease with
increasing σr . The surface energy-minimization model in [23]
(starred-solid lines) only gives qualitative agreement with
experiments.

2. Prolate-to-oblate crossover frequency

The frequency at which the equilibrium vesicle shape
crosses over from prolate to oblate depends on the conductivity
ratio and vesicles size [10,23,51–53]. In a recent experiment,
Peterlin [23] put vesicles of different sizes under a sequence
of stepwise frequency changes, ranging from hundreds to a
thousand hertz for a duration of ≈ 3 s with the frequency
increasing or decreasing around the crossover frequency; see
the symbols in Fig. 7(a).

At the crossover frequency (from prolate to oblate, for
example), the equilibrium vesicle shape is spherical, which
corresponds to the limit ξ0 → ∞. In this limit, the membrane
excess area � ≈ 0, and Vm reduces to the spherical shell
potential. This allows us to perform an asymptotic analysis

on the equilibrium vesicle shape elongation near the crossover
frequency, where we expand all functions of ξ0 in terms of
ξ0 ∼ 1/ε2 with ε  1. For example, the Legendre polynomial
Q1(ξ0) and its derivative take the form Q1 ∼ 1

3ξ 2
0

+ 1
5ξ 4

0
+

O( 1
ξ 6

0
), Q′

1 ∼ − 2
3ξ 3

0
− 4

5ξ 5
0

+ O( 1
ξ 7

0
). We expand the semifocal

length c ∼ 1
ξ0

+ O( 1
ξ 3

0
), and similarly for all the other functions

in Appendix A. We then substitute these expansions into
Eqs. (16), (30), and (32), and obtain a series expanded in ξ−2

0 :∑
n=0 anξ

−2n
0 = 0, where the coefficients an are functions of

fluid and membrane properties. Keeping all the leading-order
terms at O(1/ξ 2

0 ), we obtain an equation for ξ 2
0 , which gives

the solution

ξ0(ω) =
√

2

35

√− CaEABC

G
(33)
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FIG. 6. (Color online) Morphological phase diagram for
κ = 10kBT , E0 = 2 × 104 V/m. The conductivity ratio σr

is determined by varying the conductivity of the exter-
nal medium (σe) and holding the interior fixed at σi =
15 μS/cm(�), 65 μS/cm(©), 130 μS/cm(

�
). Solid lines are from

the spheroidal model with s0 = 45 000, dashed lines are from the
small-deformation model with s0 = 10 000, and starred-solid lines
are from the energy minimization approach [23].
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FIG. 7. (Color online) (a) Shape elongation near the crossover between prolate and oblate for σr = 0.9, d = 4 nm, κ = 1.2 × 10−19 J, and
E0 = 500 V/m. Symbols are the experimental data in [23]: Full (open) symbols are with increasing (decreasing) frequency. s0 = 1 is used in
both spheroidal and small-deformation models. (b) Prolate-oblate crossover frequency, ω∗, as a function of vesicle radius r0.

with coefficients A, B, C, and G given in Appendix D. The
leading-order shape elongation for a prolate vesicle near the
crossover frequency is a

b
∼ 1 + 1

2ξ 2
0

+ O( 1
ξ 4

0
). Similarly for

the crossover from oblate to prolate, the leading-order shape
elongation would be a

b
∼ 1 − 1

2λ2
0
+ O( 1

λ4
0
).

Figure 7(a) shows the comparison between the asymptotic
analysis on the spheroidal model (solid line), calculation from
the small-deformation model (dashed line), and experiments
(symbols). First of all, we observe a small difference in the
crossover frequency (value of ω∗ when shape elongation is
unity) between the solid and the dashed lines: We attribute
this small disagreement to the differences in treating the stress
balance on the membrane between the two models. Secondly,
we observe a significant difference in the slope at the crossover
frequency between the two curves, with the spheroidal model
in better agreement with the experimental data. We have tried
to adjust s0 to fit the small-deformation model to experimental
data with the same slope at the crossover frequency, but we
are unable to find a reasonably good fit.

The crossover frequency also depends on the initial spher-
ical size of the vesicles. Figure 7(b) shows the comparison
results of the experiment in [23], where the spheroidal results
(solid curves), the small-deformation results (dashed curves),
and the energy-minimization results (starred solid curves)
are all plotted against the initial spherical radius r0. All
three theories show good agreement with the experimental
data.

IV. CONCLUSION

In this work, we constructed a spheroidal model to study the
equilibrium deformation of a vesicle under ac electric fields
within the leaky dielectric framework. Such an approach has
been shown to capture large equilibrium electrodeformation
of a viscous surfactant-covered drop [44] and the transient
dynamics of a vesicle in a dc field [29]. In our spheroidal
model, the vesicle membrane is modeled as a nonconducting
capacitive elastic membrane with a homogeneous tension that
depends on the excess area. We developed a spheroidal shell
model to compute the potential across the vesicle membrane.
By adjusting the membrane tension coefficient s0, we are able
to reproduce the experiments in terms of the dependence of

the vesicle shape elongation on the frequency ω, conductivity
ratio σr , and the initial spherical radius of the vesicle.
We further explore the effects of bending rigidity on the
shape elongation. In addition, we conducted an asymptotic
analysis on our spheroidal model around the prolate-oblate
crossover frequency, and we find very good agreement with
the experiments in terms of both the value of the crossover
frequency and the rate of change of shape elongation with
respect to frequency.

In this work, we did not consider the effects of membrane
conductance and displacement currents across the membrane,
both of which are found to destabilize a planar membrane
under electric fields [54–56]. We focus on the equilibrium
deformation and ignore the time-dependent harmonic stresses.
Consequently, we did not consider the dynamic transient and
oscillation around the averaged equilibria, yet our spheroidal
model can easily incorporate the time-dependent stresses, and
this is now part of an ongoing work. In addition, the vesicle
area is not held constant in our model. Furthermore, our
spheroidal model is applicable only to spheroidal deformation,
and cannot describe the dynamics and equilibrium shapes of
an axisymmetric nonspheroidal vesicle.

We are now refining our model by replacing the leaky
dielectric fluids with electrolytes in the solvents, in which case
the electric potential no longer satisfies the simple Laplace
equation, but rather the Poisson-Boltzmann equations that
take into account the transport of various charged species
in the fluids. The solvents are known to destabilize lipid
membrane under a dc electric field [57]. It is reasonable to
expect more complex dynamics and equilibrium shapes for a
vesicle immersed in electrolytes under an ac field. For example,
a vesicle under an electric field may have very different
morphology that depends on the net charges in the bulk. We
are currently conducting a numerical investigation into how
the morphological phase diagram in Fig. 6 may be altered by
solvent electrokinetics.
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APPENDIX A: INTEGRALS IN THE SPHEROIDAL MODEL

In the following equations N ≡ G3(ξ0)G′
5(ξ0) − G′

3(ξ0)G5(ξ0) for prolate, and N ≡ G3(λ0)G′
5(λ0) − G′

3(λ0)G5(λ0) for oblate.
The functions f11(ξ0)–f15(ξ0) are given by

f11 =
∫

ηG3(η)

ξ 2
0 − η2

dη, (A1)

f12 = 1

ξ 2
0 − 1

∫
G3(η)

(
2ηG′

3(η)(
ξ 2

0 − η2
)2 + G′′

3(η)

ξ 2
0 − η2

)
dη, (A2)

f13 = G′
3G

′′
5 − G′

5G
′′
3

2N
f11, (A3)

f14 = −ξ0H
′
3

∫
ηG3(η)(
ξ 2

0 − η2
)2 dη + H ′′

3

2
f11, (A4)

f15 = ξ0H
′
3

∫
ηG3(η)(
ξ 2

0 − η2
)2 dη − (G3G

′′
5 − G5G

′′
3)H ′

3

2N
f11.

(A5)

Furthermore, the functions f21(ξ0)–f26(ξ0) are given by

f21 = ξ 2
0

2

∫
(3η2 − 1)(η2 − 1)

ξ 2
0 − η2

dη, (A6)

f22 = −H ′
3

∫
(1 − 3η2)

(
2η4 + ξ 2

0 − 3ξ 2
0 η2

)
(
ξ 2

0 − η2
)2 dη + 3H3ξ0

∫
1 − 3η2

ξ 2
0 − η2

dη, (A7)

f23 = − 49

30N
G3H

′
3

(
1 − 3ξ 2

0

) + H ′
3

∫
(1 − 3η2)

(
2η4 + ξ 2

0 − 3ξ 2
0 η2

)
(
ξ 2

0 − η2
)2 dη, (A8)

f24 = 1

c

[
ξ0

(
ξ 2

0 − 1
)1/2

∫
(3η2 − 1)(
ξ 2

0 − η2
)3/2 dη + ξ0(

ξ 2
0 − 1

)1/2

∫
(3η2 − 1)(
ξ 2

0 − η2
)1/2 dη

]
, (A9)

f25 = − ξ0

ξ 2
0 − 1

∫ (
1 − 3η2

)(
2ξ 2

0 − η2 − 1
)
G′

3(η)(
ξ 2

0 − η2
)2 dη + 3ξ0

∫
1 − 3η2

ξ 2
0 − η2

dη − (μr − 1)f12 + f13

μrf14 + f15
f22, (A10)

f26 = ξ0

ξ 2
0 − 1

∫
(1 − 3η2)

(
2ξ 2

0 − η2 − 1
)
G′

3(η)(
ξ 2

0 − η2
)2 dη − 49

30N

(
1 − 3ξ 2

0

)
G′

3 − (μr − 1)f12 + f13

μrf14 + f15
f22, (A11)

fκ =
−72 + 106ξ 2

0 − 225ξ 4
0 + 135ξ 6

0 + 45ξ 4
0

(
4 − 3ξ 2

0

)√
ξ 2

0 − 1 arccsc(ξ0)

15c3ξ 3
0

(
ξ 2

0 − 1
)2 . (A12)

The functions f11(λ0)–f15(λ0) are given by

f11 =
∫

ηG3(η)

λ2
0 + η2

dη, (A13)

f12 = 1

λ2
0 + 1

∫
G3(η)

(
−2ηG′

3(η)(
λ2

0 + η2
)2 + G′′

3(η)

λ2
0 + η2

)
dη, (A14)

f13 = G′
3G

′′
5 − G′

5G
′′
3

2N
f11, (A15)
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f14 = λ0H
′
3

∫
ηG3(η)(
λ2

0 + η2
)2 dη − H ′′

3

2
f11, (A16)

f15 = −λ0H
′
3

∫
ηG3(η)(
λ2

0 + η2
)2 dη + (G3G

′′
5 − G5G

′′
3)H ′

3

2N
f11. (A17)

Furthermore, the functions f21(λ0)–f26(λ0) are given by

f21 = λ2
0

2

∫
(3η2 − 1)(η2 − 1)

λ2
0 + η2

dη, (A18)

f22 = H ′
3

∫
(3η2 − 1)

(
λ2

0 − 3λ2
0η

2 − 2η4
)

(
λ2

0 + η2
)2 dη + 3λH3

∫
3η2 − 1

λ2
0 + η2

dη, (A19)

f23 = −H ′
3

∫
(3η2 − 1)

(
λ2

0 − 3λ2
0η

2 − 2η4
)

(
λ2

0 + η2
)2 dη + 49

30N

(
1 + 3λ2

0

)
g3H

′
3, (A20)

f24 = 1

c

[
λ0

(
λ2

0 + 1
)1/2

∫
(1 − 3η2)(
λ2

0 + η2
)3/2 dη + λ0(

λ2
0 + 1

)1/2

∫
(1 − 3η2)(
λ2

0 + η2
)1/2 dη

]
, (A21)

f25 = λ0

λ2
0 + 1

∫
(3η2 − 1)

(
2λ2

0 + η2 + 1
)
G′

3(η)(
λ2

0 + η2
)2 dη + 3λ

∫
3η2 − 1

λ2
0 + η2

dη + (μr − 1)f12 + f13

μrf14 + f15
f22, (A22)

f26 = − λ0

λ2
0 + 1

∫
(3η2 − 1)

(
2λ2

0 + η2 + 1
)
G′

3(η)(
λ2

0 + η2
)2 dη + 49

30N

(
1 + 3λ2

0

)
g′

3 + (μr − 1)f12 + f13

μrf14 + f15
f23, (A23)

fκ =
72 + 106λ2

0 + 225λ4
0 + 135λ6

0 − 45λ4
0

(
4 + 3λ2

0

)√
λ2

0 + 1 arccoth
(√

λ2
0 + 1

)
15c3λ3

0

(
λ2

0 + 1
)2 . (A24)

APPENDIX B: TRANSMEMBRANE POTENTIAL

The electric potential coefficients βe, αm, βm, and αi are obtained from the boundary conditions at ξ = ξe and ξ = ξi (see
Fig. 1):

(a) Continuity of the potential:
φe(ξe) = φm(ξe), φm(ξi) = φi(ξi). (B1)

(b) Continuity of the normal component of the complex current density, Eq. (9):

−Ke

hξ

∂φe

∂ξ

∣∣∣∣
ξe

= −Km

hξ

∂φm

∂ξ

∣∣∣∣
ξe

, −Km

hξ

∂φm

∂ξ

∣∣∣∣
ξi

= −Ki

hξ

∂φi

∂ξ

∣∣∣∣
ξi

. (B2)

Condition (a) is justified because the normal component of the electric field must be bounded [25,33].
The remaining electric potential coefficients are given by

αi = cKeKm(ξiQ
′
i − Qi)(Qe − ξeQ

′
e)

D(ω)
, (B3)

αm = cKe(ξeQ
′
e − Qe)(KiQi − KmξiQ

′
i)

D(ω)
, (B4)

βm = cξiKe(Ki − Km)(Qe − ξeQ
′
e)

D(ω)
, (B5)

βe = cξiKe(Ki − Km)Qe

D(ω)
+ cξe{Ki(Km − Ke)Qi + Kmξi[(Km − Ki)Q′

e + (Ke − Km)Q′
i]}

D(ω)
, (B6)
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where

D(ω) = KeξeQ
′
e

( − KiQi + KmξiQ
′
i

) + Qe

[
KiKmQi + (Ke − Km)(Ki − Km)ξiQ

′
e − ξiQ

′
iK

2
m

]
, (B7)

and Qe ≡ Q1(ξe), Qi ≡ Q1(ξi), Q′
e ≡ Q′

1(ξe), and Q′
i ≡ Q′

1(ξi).

APPENDIX C: MAXWELL STRESSES

The Maxwell stresses in prolate coordinates are given by

�Sξξ � = 1

4c2

{
η2

(
ξ 2

0 − 1
)

ξ 2
0 − η2

(
c2 − 2cτ3Q

′
1 + (

τ 2
3 + τ 2

4

)
(Q′

1)2
)

+ ξ 2
0 (η2 − 1)

ξ 2
0 − η2

[
c2 − 2cτ3Q1

ξ0
+ (

τ 2
3 + τ 2

4

) (
Q1

ξ0

)2 ]
−

(
τ 2

1 + τ 2
2

)
εr

(
η2

(
ξ 2

0 − 1
)

ξ 2
0 − η2

+ ξ 2
0

(
η2 − 1

)
ξ 2

0 − η2

)}
(C1)

and

�Sξη� = η

2c2

√(
ξ 2

0 − 1
) (

1 − η2
)

ξ 2
0 − η2

{[
c2ξ0 − c(Q1 + ξ0Q

′
1)τ3 + (

τ 2
3 + τ 2

4

)
Q1Q

′
1

] − (
τ 2

1 + τ 2
2

)
ξ0/εr

}
, (C2)

where τ1 = Re[β], τ2 = Im[β], τ3 = Re[α], and τ4 = Im[α]. Re and Im denote the real and imaginary parts.
The equivalent equations in the oblate coordinates are

�Sλλ� = 1

4c2

{
η2

(
λ2

0 + 1
)

λ2
0 + η2

(
c2 − 2cτ3Q

′
1 + (

τ 2
3 + τ 2

4

)
(Q′

1)2
) + λ2

0(η2 − 1)

λ2
0 + η2

[
c2 − 2cτ3Q1

λ0
+ (

τ 2
3 + τ 2

4

)(Q1

λ0

)2]

−
(
τ 2

1 + τ 2
2

)
εr

(
η2

(
λ2

0 + 1
)

λ2
0 + η2

+ λ2
0(η2 − 1)

λ2
0 + η2

)}
(C3)

and

�Sλη� = η

2c2

√(
λ2

0 + 1
)

(1 − η2)

λ2
0 + η2

{[
c2λ0 − c(Q1 + λ0Q

′
1)τ3 + (

τ 2
3 + τ 2

4

)
Q1Q

′
1

] − (
τ 2

1 + τ 2
2

)
λ0/εr

}
. (C4)

APPENDIX D: ASYMPTOTIC ANALYSIS

A = (2 + σr )2 + 9ω2, (D1)

B = 2σ 2
r (2 + σr )2 + [

18σ 2
r + C2

m(σr − 1)(2 + σr )2(5 + 2σr ) + 2Cmσr

(
σr + σ 2

r − 2
)]

ω2, (D2)

C = −2σ 2
r (2 + σr )3 [9 CaE(19 + 13σr ) + 560(2 + σr )(4 + s0)] − 71 680C2

mω2 (D3)

+ (
9 CaE(2 + σr )

[−6σ 2
r (121 + 71σr ) + Cm(σr − 1)σr (2 + σr )(130 + 107σr ) + C2

m(60 + 23σr )
(
σr + σ 2

r − 2
)2]

+ 280
(−72σ 2

r (2 + σr )2(4 + s0) + C2
m(−64s0 − σr (4 + σr )[4 + σr (2 + σr )][12 + σr (6 + σr )](4 + s0)))

)
ω2

− 9
(−711 CaECmσr

(
σr + σ 2

r − 2
) + 288σ 2

r [6 CaE + 35(4 + s0)] + 5C2
m(2 + σr )2[9 CaE(σr − 1)2

+ 112(2 + σr )2(4 + s0)]
)
ω4 − 22680C2

m(2 + σr )2(4 + s0)ω6,

G = 3 CaE[(2 + σr )2 + 9ω2]
(
2σ 2

r (2 + σr )2 + [
18σ 2

r + C2
m(σr − 1)(2 + σr )2(5 + 2σr ) + 2Cmσr

(
σr + σ 2

r − 2
)]

ω2
)
. (D4)
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