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Swimming efficiency in a shear-thinning fluid
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Micro-organisms expend energy moving through complex media. While propulsion speed is an important
property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a
micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a
Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers
often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear
rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more
efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and
rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental
questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general
locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface
velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal
shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case.
The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their
swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial
swimmers should be designed to move through complex media efficiently.

DOI: 10.1103/PhysRevE.96.062606

I. INTRODUCTION

Motility of micro-organisms in fluids plays vital roles in
diverse biological processes [1,2]. The physics governing their
locomotion at low Reynolds numbers in Newtonian fluids
is relatively well understood [3]. However, micro-organisms
often move through complex fluids displaying non-Newtonian
fluid behaviors such as viscoelasticity and shear-thinning vis-
cosity. The influences of these nonlinear rheological properties
on biological locomotion at small scales and their implications
on the design of artificial microswimmers are under active
research. While extensive efforts have focused on the effects of
viscoelasticity [4,5], much less is known about locomotion in
shear-thinning fluids. Many biological fluids, including blood
and respiratory and cervical mucus, display shear-thinning
rheology, where the viscosity decreases nonlinearly with the
shear rate [6]. Recent efforts have begun to seek answers to
fundamental questions on locomotion in shear-thinning fluids
[7].

Shear-thinning rheology might be expected to enhance
self-propulsion due to the reduction in viscous drag on the
swimmer as the fluid becomes “thinner” with actuations. The
locomotion problem, however, embraces more complexity
because the reduction in fluid viscosity could simultaneously
reduce the propulsive thrust. Asymptotic [8] and numerical
[9–11] studies on undulatory swimmers as well as experiments
on Caenorhabditis elegans [12,13] found equal or greater
swimming speeds in a shear-thinning fluid than in a Newtonian
fluid. A recent experiment on helical propulsion [14] also
observed enhanced speeds. On the other hand, the shear-
thinning rheology was also shown to reduce the swimming
speed in other scenarios [9,10,15–17]. These findings suggest
that whether a swimmer displays a faster or slower swimming
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speed in a shear-thinning fluid largely depends on the class of
swimmer [9,10,18] and details of its swimming gait [16].

While propulsion speed is an important property of loco-
motion, a swimmer may also adjust its propulsion mechanism
to reduce the energetic cost of moving through a medium at the
expense of speed depending on the biological scenarios and
environmental constraints. The concept of efficiency is often
introduced in the analysis of locomotion. A swimming gait that
maximizes the propulsion speed may not necessarily enhance
the swimming efficiency. It is therefore biologically relevant
to investigate how the properties of a swimmer and its sur-
rounding medium influence the efficiency of locomotion. The
classical definition of thermodynamic efficiency was proved
difficult to apply in swimming at low Reynolds numbers
[19]. Lighthill introduced the Froude efficiency, a concept
coming from propeller theory, to characterize the efficiency
of low-Reynolds-number swimmers [20,21]. The swimming
efficiency is defined as η = DU/P , which compares the total
power dissipation P in the fluid during swimming with a
useful power output, defined as the power against the drag
D in moving a rigid body of identical shape as the swimmer
at the swimming speed U . This standard definition has been
widely adopted to characterize the efficiency of different
low-Reynolds-number swimmers in Newtonian fluids [22–29].
The efficiency of swimming in shear-thinning fluids, however,
remains largely unexplored despite its biological relevance.

Recently some undulatory swimmers have been shown
to dissipate less power (P) during swimming in a shear-
thinning fluid [8,11,30]. Information on how shear-thinning
rheology alters the useful power output (DU ) is still required
to quantify their swimming efficiency. Even though these
undulatory swimmers display equal or greater speeds (U ),
whether they generate more or less useful power output still
depends on how drag (D) is modified in the shear-thinning
fluid. Since both the useful power output and the total power
dissipation may be modified by shear-thinning rheology in
nontrivial ways, it is difficult to predict the resulting effect
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on the swimming efficiency a priori. Much less is known
about the power dissipation and efficiency of other types of
swimmers in shear-thinning fluids. Here we ask the questions:
Is swimming in a shear-thinning fluid more efficient or
less than in a Newtonian fluid? How does the swimming
efficiency depend on the propulsion mechanism of a swimmer
(e.g., pushers versus pullers) in a shear-thinning fluid? The
answers to these fundamental questions provide insights into
how micro-organisms and artificial microswimmers can move
through biological media displaying shear-thinning rheology
in energetically favorable ways.

In this work, we probe the answers to the above questions
by considering the squirmer model [20,31] as a general
locomotion model to represent different types of swimmers in
a shear-thinning fluid. We explicitly calculate the swimming
efficiency of a squirmer to reveal how shear-thinning rheology
affects the efficiency of locomotion at low Reynolds numbers.

The paper is organized as follows. In Sec. II we formulate
the problem by introducing the squirmer model (Sec. II A)
and governing equations for the shear-thinning fluid medium
(Sec. II B) before discussing the asymptotic limits considered
in this work (Sec. II C). In Sec. III we employ a reciprocal
theorem approach to calculate the power dissipation and the
swimming efficiency of a squirmer in a shear-thinning fluid,
bypassing detailed calculations of the non-Newtonian flow.
The results are discussed in Sec. IV before some concluding
remarks in Sec. V.

II. FORMULATION

A. The squirmer model

The squirmer model, first studied by Lighthill [20] and
Blake [31] to model the propulsion of ciliated protozoa, is
arguably the simplest possible three-dimensional swimmer
of finite size. The motion of beating cilia is represented as
a distribution of velocities on the squirmer surface. For a
steady spherical squirmer of radius a, the tangential, time-
independent surface velocity distribution is decomposed into
a series of the form [32]

uθ (r = a,θ ) =
∞∑

k=1

− 2

k(k + 1)
BkP

1
k (cos θ ), (1)

where P 1
k represents the associated Legendre function of the

first kind, θ is the polar angle measured from the axis of
symmetry, and the squirming modes Bk can be related to Stokes
flow singularity solutions. In a Newtonian fluid, only the B1

mode (a source dipole) contributes to the propulsion speed
UN = 2B1/3, and the B2 mode (a force dipole) is the slowest
decaying spatial mode that dominates the far-field velocity
generated by a squirmer. Therefore, many studies considered
model swimmers represented by only the first two modes of
the expansion [32].

Although the squirmer model was developed originally
for swimming ciliates (such as Volvox [33]), it has also
gained popularity as a general locomotion model [34–39]. The
parameters in the squirming modes can be adjusted to represent
different types of swimmers, broadly categorized as pushers
(α=B2/B1 <0), pullers (α>0), and neutral squirmers (α=0).
A pusher, such as the bacterium Escherichia coli, obtains its

thrust from the rear part of the body. A puller, such as the
alga Chlamydomonas, obtains its thrust from the front part. A
neutral squirmer generates a surrounding flow corresponding
to a source dipole.

B. Governing equations

The incompressible flow around a squirmer in a shear-
thinning fluid at low Reynolds number is governed by the
continuity equation and Cauchy’s equation of motion

∇ · u = 0, (2)

∇ · T = 0, (3)

where the stress tensor T = −pI + τ . The constitutive equa-
tion for a shear-thinning fluid is given by the Carreau-Yasuda
equation [6], τ = [η∞ + (η0 − η∞)[1 + (λt |γ̇ |)2]

(n−1)/2
]γ̇ ,

where η0 and η∞ represent the zero and infinite-shear rate
viscosities, respectively, and the strain rate tensor γ̇ = ∇u +
(∇u)T with its magnitude given by |γ̇ | = (γ̇ij γ̇ij /2)1/2. The
power law index n < 1 characterizes the degree of shear
thinning, and the relaxation time λt sets the crossover strain
rate at which the non-Newtonian behavior becomes significant.
Rheological data of biological mucus can be well fitted by the
Carreau-Yasuda model [8,40].

We nondimensionalize lengths by the squirmer radius a,
velocities by the first mode of actuation B1, strain rates by
ω = B1/a, and stresses by η0ω. The dimensionless constitutive
equation then takes the form

τ ∗ = [β + (1 − β)(1 + Cu2|γ̇ ∗|2)
n−1

2 ]γ̇ ∗, (4)

where the viscosity ratio β = η∞/η0 ∈ [0,1] and the Carreau
number Cu = λtω, which compares the characteristic strain
rate ω to the crossover strain rate 1/λt defined by the fluid
relaxation time.

The deviatoric stress tensor τ ∗ depends nonlinearly on the
strain rate tensor γ̇ ∗. We first conduct asymptotic analyses
to make analytical progress in the weakly nonlinear regime.
Numerical simulations of the full problem later verify that
the asymptotic results capture the essential behaviors of
the system. The numerical simulations of the momentum
equations at zero Reynolds number with the Carreau-Yasuda
constitutive relation Eq. (4) are implemented in the finite
element method software COMSOL in a similar fashion
reported in our previous work [16].

Hereafter, we drop the stars for simplicity and refer to only
dimensionless variables unless otherwise stated.

C. Asymptotic analyses

The constitutive equation, Eq. (4), reduces to the Newtonian
limit when Cu = 0 or β = 1. We investigate the weakly
non-Newtonian behaviors by expanding Eq. (4) in the limits
of small Carreau number (ε = Cu2 � 1) or small deviation
of the viscosity ratio from unity (ε = 1 − β � 1) in regular
perturbation series. In both cases, the constitutive equation
with the leading-order non-Newtonian contribution takes the
form

τ ∼ γ̇ 0 + ε(γ̇ 1 + A), (5)
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where for expansion in Carreau number (ε = Cu2 � 1)

A = (1 − β)(n − 1)

2
|γ̇ 0|2γ̇ 0, (6)

and for expansion in viscosity ratio (ε = 1 − β � 1)

A = [−1 + (1 + Cu2|γ̇ 0|2)(n−1)/2]γ̇ 0. (7)

The non-Newtonian problem can be solved perturbatively
to obtain the detailed flow surrounding the squirmer order
by order. We instead bypass these detailed calculations via
the reciprocal theorem [23,41–43] to calculate the power
dissipation and the swimming efficiency of a squirmer in a
shear-thinning fluid.

III. A RECIPROCAL THEOREM APPROACH

To assess the efficiency of squirming in a shear-thinning
fluid, it is necessary to consider the power P expended during
the swimming process. Since the work done by the surface
squirming motion is equal to the power dissipation in the fluid,
we have

P = −
∫

S

T · n · u dS, (8)

where S is the squirmer surface and n is the unit outward
normal to S. In a Newtonian fluid, Stone and Samuel [23]
applied the reciprocal theorem to obtain the swimming speed
of a squirmer without knowledge of the surrounding flow.
Although this approach cannot get as far regarding power
dissipation, which involves gradients of the surrounding flow,
bounds can still be set on the power dissipation and swimming
efficiency with only knowledge of surface velocities [23]. The
expression of power dissipation in a Newtonian fluid was
obtained through detailed calculations by Lighthill [20] and
Blake [31], which, for a squirmer with only two modes, reads

PN = 8π (2 + α2)

3
· (9)

We calculate the leading-order correction to the power
dissipation of a squirmer in a shear-thinning fluid in the
asymptotic limits of ε = Cu2 � 1 or ε = 1 − β � 1 as

P ∼ PN − ε

(∫
S

T0 · n · u1 dS +
∫

S

T1 · n · u0 dS

)
. (10)

The first integral in the bracket above vanishes because u1 is a
constant representing the first correction in propulsion speed
on the squirmer surface and hence

∫
S

T0 · n · u1 dS = 0 due
to the force-free condition (

∫
S

T0 · n dS = 0). The remaining
integral

P ∼ PN − ε

∫
S

T1 · n · u0 dS (11)

involves the solution to the first-order non-Newtonian flow
problem satisfying

∇ · u1 = 0, (12)

∇ · T1 = 0, (13)

where

T1 = −p1I + γ̇ 1 + A. (14)

Instead of solving Eqs. (12) and (13), we obtain the correction
to the Newtonian power dissipation via a reciprocal theorem
approach proved effective in viscoelastic fluids [43].

To apply the reciprocal theorem, we consider the Newtonian
squirming problem with known solutions [20,31] as the
auxiliary problem, which satisfies

∇ · u0 = 0, (15)

∇ · T0 = 0, (16)

where T0 = −p0I + γ̇ 0. Taking the inner product of Eq. (13)
with u0, minus the inner product of Eq. (16) with u1, and
integrating over the entire fluid volume V , we have

∫
V

[u0 · (∇ ·
T1) − u1 · (∇ · T0)] dV = 0. By vector calculus the integral
can be rewritten as∫

V

∇ · (u0 · T1 − u1 · T0) dV

=
∫

V

(∇u0 : T1 − ∇u1 : T0) dV. (17)

The left-hand side of Eq. (17) can be converted into surface
integrals by the divergence theorem, and the right-hand side
can be simplified by the constitutive equation Eq. (14) as

∫
S

T1 · n · u0 dS −
∫

S

T0 · n · u1 dS = −
∫

V

A : ∇u0 dV.

(18)

Again, since u1 is a constant on the squirmer surface, the
integral

∫
S

T0 · n · u1 dS vanishes by the force-free condition,
and we obtain the result∫

S

T1 · n · u0 dS = −
∫

V

A : ∇u0 dV. (19)

We substitute Eq. (19) into Eq. (11) and obtain the first
correction to the power dissipation due to the shear-thinning
rheology for arbitrary distributions of surface velocity

P ∼ PN + ε

∫
V

A : ∇u0 dV, (20)

which depends on only known solutions in Stokes flows
[20,31]. Here A is given by Eq. (6) or Eq. (7) depending
on the asymptotic limit considered.

We use the standard definition of swimming efficiency
introduced by Lighthill [21] (see Sec. I)

η = DU

P , (21)

which compares the power dissipation P in the shear-thinning
fluid due to the swimming motion [calculated by Eq. (20)] with
the power required to drag a rigid sphere at the same swimming
speed as the squirmer given by DU . Here U denotes the
swimming speed of the squirmer, and D represents the force
required to drag a rigid sphere at the swimming speed in the
same fluid medium. Both quantities can be readily calculated
in the two asymptotic limits considered in this work using the
reciprocal theorem approach [16].
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FIG. 1. (a) Power dissipation in a shear-thinning fluid P (scaled by the corresponding Newtonian value PN ) for a neutral squirmer (α = 0,
gray ©), puller (α = 5, blue �), and pusher (α = −5, red �) by numerical simulations (symbols) agrees well with the asymptotic expansions
in viscosity ratio for a neutral squirmer (solid line) and a pusher or puller (dashed line) at ε = 1 − β = 0.1 and n = 0.25. The variation in
power dissipation at low shear rates is also well captured by the asymptotic expansion in Carreau number, Cu, given by Eq. (22) (dash-dotted
lines). (b) Numerical computations of the power dissipation at ε = 0.99 and n = 0.25. The insets show the corresponding swimming velocity
U compared with the Newtonian value UN .

IV. RESULTS AND DISCUSSION

Here we employ the asymptotic results derived with the
reciprocal theorem approach together with numerical simula-
tions to explore how shear-thinning rheology affects the swim-
ming efficiency of different types of swimmers. We first focus
on the results for canonical two-mode squirmers in Sec. IV A
before investigating the effects of additional squirming modes
in Sec. IV B.

A. Two-mode squirmers

In the squirmer model (see Sec. II A), typically only the
first two modes (B1 and B2) in Eq. (1) are retained to represent
different types of swimmers [34–39]: pushers (α = B2/B1 <

0), pullers (α > 0) and neutral squirmers (α = 0). These two-
mode squirmers were shown to always swim slower in a shear-
thinning fluid than in a Newtonian fluid [16] (see variations of
propulsion speed U reproduced as insets in Fig. 1). Does the
shear-thinning rheology render swimming of these two-mode
squirmers more efficient or less? We first calculate the power
dissipation during swimming in a shear-thinning fluid.

1. Power dissipation

At low shear rates ε = Cu2 � 1, Eq. (20) with Eq. (6) lead
to an analytical expression for the power dissipation

P
PN

∼ 1 + Cu2(1 − β)(n − 1)
C1(C2 + C3α

2 + α4)

2 + α2
, (22)

where C1 = 1.40, C2 = 2.06, and C3 = 5.75 are decimal
numbers rounded up to represent lengthy fractions resulting
from the analytical integration. Since the power law index
n < 1 and viscosity ratio β < 1, Eq. (22) shows that shear-
thinning rheology reduces the power dissipation of a squirmer
[dash-dotted lines in Fig. 1(a)]. At high strain rates as
Cu → ∞, from Eq. (7) we have A ∼ γ̇ 0 in which case
the integral in Eq. (20) reduces to

∫
V

A : ∇u0 dV ∼ ∫
V

γ̇ 0 :
∇u0 dV = PN . Therefore, the power dissipation asymptotes
to P ∼ (1 − ε)PN = βPN as Cu → ∞; that is, for a viscosity

ratio β = 0.9, the powerP ∼ 0.9PN as shown in Fig. 1(a). The
total power dissipation decreases monotonically over the full
range of Cu for all two-mode squirmers [black solid and blue
dashed lines in Fig. 1(a)] as revealed by results obtained with
Eqs. (20) and (7) in the asymptotic limit ε = 1 − β � 1. The
resulting integral is evaluated by quadrature because a closed
form analytical expression is not available. These asymptotic
results (represented by lines) in Fig. 1(a) agree well with
full numerical simulations (represented by symbols; see figure
caption for details). In Fig. 1(b), we run numerical experiments
with ε = 0.99 and n = 0.25 to emulate human cervical mucus
[8,40] and find similar trends. The monotonic decay in power
dissipation for these squirmers is similar to the numerical
and experimental results reported for undulatory swimmers
[11,30].

We remark that various types of non-Newtonian rheology
(viscoelasticity and shear-thinning rheology) can affect the
power dissipation of pushers versus pullers in different man-
ners. The viscoelastic stress was shown to increase (decrease)
the power dissipation for a pusher (puller) [43]; however,
the shear-thinning rheology studied here reduces the power
dissipation of a pusher and a puller indifferently as shown in
Fig. 1 and by Eq. (22) for even powers of α.

2. Swimming efficiency

Next, we use the power dissipation to calculate asymptoti-
cally the non-Newtonian correction to swimming efficiency
defined in Eq. (21). At low shear rates ε = Cu2 � 1, the
swimming efficiency is given by

η

ηN

∼ 1 + Cu2(1 − β)(1 − n)
C4 + C5α

2 + C6α
4

2 + α2
, (23)

where ηN = 1/(2 + α2) represents the Newtonian swimming
efficiency of a two-mode squirmer, C4 = 1.82, C5 = 5.32,
and C6 = 0.30. The non-Newtonian correction due to shear-
thinning rheology is strictly positive for arbitrary α, meaning
that all two-mode squirmers (neutral squirmers, pushers, and
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FIG. 2. (a) Enhanced swimming efficiency in a shear-thinning fluid η (compared with the Newtonian efficiency ηN ) for a neutral squirmer
(α = 0, ©), puller (α = 5, �), and pusher (α = −5, �) by numerical simulations (symbols) is well captured by the asymptotic expansions
in viscosity ratio for a neutral squirmer (solid line) and a pusher or puller (dashed line) at ε = 1 − β = 0.1 and n = 0.25. The asymptotic
expansion in Carreau number, Cu, given by Eq. (23) (dash-dotted lines) is effective in predicting the swimming efficiency at low shear rates.
(b) Numerical computations of the power dissipation at ε = 0.99 and n = 0.25. For a given viscosity ratio, an optimal Cu maximizing the
swimming efficiency of a swimmer exists.

pullers) display enhanced swimming efficiency at low shear
rates.

At higher shear rates, the swimming efficiency varies
nonmonotonically as a function of Cu in both the asymptotic
[Fig. 2(a)] and biologically relevant [Fig. 2(b)] regimes. The
swimming efficiency in a shear-thinning fluid is systemically
higher than that in a Newtonian fluid (η/ηN � 1) over the full
range of Cu for all two-mode squirmers. There exist optimal
shear rates (or optimal Cu) at which the swimming efficiency
is maximized. The numerical experiments with parameters
emulating human cervical mucus in Fig. 2(b) reveal substantial
(more than threefold) enhancement in locomotion efficiency.
The existence of an optimal Cu may influence a swimmer
to select a specific actuation rate for its swimming gait. When
operating at the optimal Cu, a swimmer effectively exploits the
shear-thinning rheology to gain the most energetically efficient
propulsion.

Next we investigate the variation of swimming efficiency
as a function of the two squirming modes α = B2/B1 at
different values of Cu. We note that swimming efficiency in the
Newtonian case ηN = 1/(2 + α2) is maximized with α = 0 (a
neutral squirmer). In a shear-thinning fluid, larger percentages
of efficiency enhancement relative to the Newtonian case
(η/ηN ) are observed for pushers and pullers (α �= 0, inset of
Fig. 3). However, a neutral squirmer (α = 0) still maximizes
the swimming efficiency in a shear-thinning fluid at different
values of Cu as shown in Fig. 3. The corresponding propulsion
speeds at these maximum efficiencies are U/UN ≈ 0.998 (for
Cu = 0.1), U/UN ≈ 0.886 (for Cu = 1), and U/UN ≈ 0.588
(for Cu = 10). These results suggest that swimmers maximiz-
ing efficiency can still maintain considerable swimming speeds
in a shear-thinning fluid.

Overall, the above results demonstrate that although two-
mode squirmers swim slower in a shear-thinning fluid than
in a Newtonian fluid for all Cu (Fig. 1 insets), they generally
gain swimming efficiency in return. We also remark that the
non-Newtonian correction to efficiency is even in α as shown
in Eq. (23), which means that the shear-thinning rheology

has exactly the same effect on the swimming efficiency of
a pusher and a puller, again in contrast to the influence of
viscoelasticity [43].

B. Effects of other squirming modes

Squirming beyond the first two modes is not typically
considered in a Newtonian analysis because other modes do
not contribute to the swimming speed [20,31]. The presence
of additional squirming modes hence simply reduces the
swimming efficiency in a Newtonian fluid [23]. However, Datt
et al. [16] found that the shear-thinning rheology renders other
squirming modes effective for propulsion. The addition of a
B3 mode alone can lead to nontrivial variations of swimming
speed. Here we probe the effect of an additional squirm-
ing mode on the swimming efficiency in a shear-thinning
fluid.

FIG. 3. Swimming efficiency η as a function of α = B2/B1 at
different values of Cu with ε = 1 − β = 0.99 and n = 0.25 in a
shear-thinning fluid: Cu = 0.1 (black ©), Cu = 1 (gray �), and Cu =
10 (light gray �). The inset shows the enhancement in efficiency
relative to the Newtonian value η/ηN as a function of α, where
ηN = 1/(2 + α2).
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FIG. 4. Swimming can be more efficient or less in a shear-thinning fluid, depending on the details of the swimming gait. (a) Swimming
efficiency at small Carreau number (η ∼ ηN + Cu2η1) given by Eq. (24) predicts instances of more efficient (η1 > 0, region in red) and less
efficient (η1 < 0, region in blue) swimming depending on squirming modes represented by α = B2/B1 and ζ = B3/B1. The level set curve
(dashed line) separates the two regions. For comparison, the efficiency and swimming speed of a two-mode squirmer (α = 15 and ζ = 0) are
shown as black dash-dotted lines in (b) and (c), respectively. With only the first two modes, the swimmer gains efficiency but loses swimming
speed. The addition of a third mode can either enhance or degrade the swimming performance depending on the choice of ζ . For illustration, a
swimmer chosen above the level set curve (α = 15 and ζ = 15) displays in (b) less efficient swimming at small Cu and in (c) slower swimming
speed for all Cu, represented by the blue dashed lines; nevertheless, the swimmer can gain efficiency above the Newtonian limit at large Cu in
(b). For the case α = 15, we determine a threshold value of ζc = −5.4 below which both the efficiency and swimming speed of the squirmer
are enhanced for all values of Cu, represented by thin green solid lines in (b) and (c). To further illustrate, a swimmer below the threshold value
(α = 15 and ζ = −15) is chosen as another example to demonstrate that swimming in a shear-thinning fluid can be both (b) more efficient and
(c) faster than the Newtonian case, represented by the red solid lines. The asymptotic expansion in Cu, Eq. (24), is effective in predicting the
swimming efficiency at small Cu (dotted lines) in (b).

Using the same theoretical framework developed in pre-
vious sections, we calculate the swimming efficiency of a
squirmer with a B3 mode analytically and numerically. At
small Cu, the swimming efficiency with the presence of a third
squirming mode (ζ = B3/B1) is given by

η

ηN

∼ 1 + Cu2(1 − β)(1 − n)

4 + 2α2 + ζ 2
× [2C4 + 2C5α

2 + 2C6α
4

+ (C7 + C8α
2 + C9α

4)ζ + (C10 + C11α
2)ζ 2

+ (C12 + C13α
2)ζ 3 + C14ζ

4 + C15ζ
5], (24)

where ηN = 2/(4 + 2α2 + ζ 2) represents the Newtonian
swimming efficiency of a three-mode squirmer, C7 = 4.48,
C8 =12.84, C9 =−1.12, C10 =6.16, C11 =5.85, C12 =2.02,
C13 = −0.68, C14 = 0.60, and C15 = −0.06. The color map
in Fig. 4(a) displays the non-Newtonian correction η1 to
swimming efficiency at low shear rates η ∼ ηN + Cu2η1 using
the analytical expression, Eq. (24).

In contrast to two-mode squirmers, which are system-
atically more efficient in a shear-thinning fluid than in a
Newtonian fluid, the shear-thinning rheology can render
swimming of a three-mode squirmer more efficient (η1 > 0)
or less (η1 < 0) relative to the Newtonian case, depending
on the choice of α and ζ . The level set curves (dashed line)
in the parameter space in Fig. 4(a) separates the region of
enhanced swimming efficiency (in red) from that of diminished
swimming efficiency (in blue) at low shear rates. By adjusting
the values of α and ζ in the swimming gait of a squirmer, we
can construct swimmers that display nontrivial variations in
both propulsion speed and swimming efficiency.

For illustration, we first show in Figs. 4(b) and 4(c) the
efficiency and swimming speed of a two-mode squirmer

α = 15 and ζ = 0 (black dash-dotted lines), where the two-
mode squirmer gains efficiency at the expense of speed. Based
on Fig. 4(a), we can construct a swimmer with α = 15 and ζ =
15 in the blue region above the level set curve, which displays
diminished swimming efficiency relative to the Newtonian
efficiency at low Cu (blue dash-dotted line) as shown in
Fig. 4(b). The variation of the swimming efficiency over the
full range of Cu, however, is nonmonotonic (blue dashed
line). Despite being less efficient than Newtonian swimming
at low Cu, the same swimmer can gain efficiency above the
Newtonian value at larger Cu by increasing the actuation rate of
the swimming gait. For this particular swimmer, its propulsion
speed is systematically lower than the Newtonian speed for
all Cu [blue dashed line, Fig. 4(c)]. Therefore, the addition
of a third mode may harm both the propulsion speed and
swimming efficiency compared with the Newtonian case for
certain choices of parameter values.

Nevertheless, the presence of a third mode also enables
the design of a swimmer to propel both faster and more
efficiently relative to the Newtonian case. For the case α = 15,
by incrementally decreasing the value ζ below the level set
curve in Fig. 4(a), we determine a threshold value of ζc = −5.4
below which both the efficiency and swimming speed of the
squirmer are enhanced for all values of Cu [thin green solid
lines in Figs. 4(b) and 4(c)]. To further illustrate, we construct
a swimmer with α = 15 and ζ = −15, which displays both
enhanced swimming efficiency [red solid line in Fig. 4(b)] and
propulsion speed [red solid line in Fig. 4(c)] relative to the
Newtonian case over the full range of Cu.

These results illustrate the nontrivial variations in both
propulsion speed and swimming efficiency due to the
shear-thinning rheology. A swimmer may adjust the spatial
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(squirming modes) and temporal (actuation rate) details of
its swimming gait for propulsion speed and/or swimming
efficiency, depending on the biological scenarios and environ-
mental constraints. The qualitative difference in the behaviors
of two-mode and three-mode squirmers calls for caution in ex-
tending conclusions based on one type of swimmer to another.

V. CONCLUSION

Micro-organisms move through complex biological media
that often display shear-thinning viscosity. This nonlinear
rheology was shown to modify the propulsion speed of
a swimmer in intriguing ways [8–12,14,16–18]. While the
propulsion speed is an important property of locomotion, the
efficiency is another factor that may determine the swimming
gait adopted by a micro-organism in order to swim through
complex media in energetically favorable ways. In this work,
via the squirmer model, we reveal how swimming efficiency
depends on the propulsion mechanism of a swimmer and the
properties of its surrounding shear-thinning fluid.

Our analysis extends the classical results by Lighthill
[20] and Blake [31] in a Newtonian fluid to the case of a
shear-thinning fluid. In the squirmer model, typically only
the first two modes of surface velocity were considered in
previous studies to represent neutral swimmers, pushers (e.g.,
Escherichia coli), and pullers (e.g., Chlamydomonas) [32]. The
shear-thinning rheology was shown to reduce the swimming
speed of these two-mode squirmers [16]. We show in this
work that, although two-mode squirmers always swim slower
in a shear-thinning fluid, they gain swimming efficiency in
return. There exist optimal surface actuation rates (Carreau
number) at which the swimming efficiency of these swimmers
can be maximized. The optimal swimming efficiency can

be substantially higher than the corresponding Newtonian
efficiency. The enhancement in swimming efficiency provides
a motivation for a swimmer to adjust its swimming gait
and actuation rate to exploit the shear-thinning rheology for
energetically efficient propulsion.

However, the above conclusion of enhanced swimming
efficiency for two-mode squirmers should not be taken as
a priori for other types of swimmers. When an additional
squirming mode is included on the squirmer surface, we show
that swimming can become less efficient in a shear-thinning
fluid than in a Newtonian fluid. Although the presence of the
additional squirming mode may harm the swimming efficiency
in some cases, we also demonstrate how the magnitude of
this additional squirming mode can be adjusted to construct
a swimmer that achieves the best of both worlds: swimming
faster and more efficiently than in a Newtonian fluid.

The nontrivial variations of both the propulsion speed and
swimming efficiency due to the nonlinear rheology suggest
potentials in further optimization of locomotion performance
otherwise impossible in a Newtonian fluid. These findings
also provide insights into how the actuation rate (modifying
the Carreau number) and spatial distribution of actuation
(modifying the relevant squirming modes) should be designed
for artificial swimmers to move through shear-thinning media
efficiently.
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