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Squirming motion in a Brinkman medium
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Micro-organisms encounter heterogeneous viscous environments consisting of
networks of obstacles embedded in a viscous fluid medium. In this paper we analyse
the characteristics of swimming in a porous medium modelled by the Brinkman
equation via a spherical squirmer model. The idealized geometry allows an analytical
and exact solution of the flow surrounding a squirmer. The propulsion speed obtained
agrees with previous results using the Lorentz reciprocal theorem. Our analysis
extends these results to calculate the power dissipation and hence the swimming
efficiency of the squirmer in a Brinkman medium. The analytical solution enables
a systematic analysis of the structure of the flow surrounding the squirmer, which
can be represented in terms of singularities in Brinkman flows. We also discuss
the spatial decay of flows due to squirming motion in a Brinkman medium in
comparison with the decay in a purely viscous fluid. The results lay the foundation
for subsequent studies on hydrodynamic interactions, nutrient transport and uptake by
micro-organisms in heterogeneous viscous environments.
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1. Introduction
Low-Reynolds-number locomotion has attracted considerable attention due to the

fundamental importance of motility of micro-organisms in many biological processes
(Fauci & Dillon 2006; Lauga & Powers 2009). Improved understanding of the physics
of swimming at small scales has also guided the design of synthetic micro-swimmers
for various biomedical applications (Ebbens & Howse 2010; Nelson, Kaliakatsos
& Abbott 2010). Micro-organisms adopt a variety of mechanisms to overcome the
constraints of swimming in the absence of inertia (Brennen & Winet 1977). Some
micro-organisms, such as spermatozoa and bacteria, propel themselves by propagating
travelling waves along their appendages (called flagella) by bending or rotating
the flagella. Other micro-organisms, such as Volvox (Drescher et al. 2009) and
Paramecium (Tamm 1972), have their surfaces covered with arrays of cilia (short
flagella) and swim by beating these cilia in coordinated fashions.

Building upon pioneering works on flagellar swimming (Taylor 1951; Hancock
1953; Gray & Hancock 1955) and ciliary propulsion (Lighthill 1952; Blake 1971),
the hydrodynamics of swimming micro-organisms in viscous media is relatively
well studied (Lauga & Powers 2009). However, micro-organisms often encounter
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heterogeneous viscous environments consisting of networks of obstacles embedded
into viscous fluid media. For instance, spermatozoa navigate through cervical mucus
with a filamentous network (Rutllant, Lopez-Bejar & Lopez-Gatius 2005); some
spirochetes swim through highly complex and heterogeneous media and cross the
blood–brain barrier to infect the brain (Radolf & Lukehart 2006; Wolgemuth 2015);
bacteria Helicobacter pylori can invade the epithelial cells by moving through the
gastric mucus gel that protects the stomach (Celli et al. 2009; Mirbagheri & Fu
2016); and some bacteria and nematodes live in saturated soil in nature (Jung 2010;
Tecon & Or 2016). An understanding of the effects due to networks of obstacles
on locomotion is still developing (Berg & Turner 1979; Siddiqui & Ansari 2003;
Leshansky 2009; Fu, Shenoy & Powers 2010; Jung 2010; Jabbarzadeh, Hyon & Fu
2014; Ho & Olson 2016; Leiderman & Olson 2016; Mirbagheri & Fu 2016).

The presence of a sparse network of stationary obstacles embedded into a viscous,
incompressible Newtonian flow can be modelled by an effective medium approach to
obtain the Brinkman equation (Brinkman 1949)

µ∇2u−∇p−µα2u= 0, ∇ · u= 0, (1.1)

which includes the additional hydrodynamic resistance −µα2u due to the network
of stationary obstacles. Here, µ is the fluid viscosity, α−2 is the permeability, and
u and p are the average velocity and pressure fields, respectively. Although the
Brinkman equation was introduced as a phenomenological model, its validity at low
particle volume fraction was established by proper averaging methods (Tam 1969;
Childress 1972; Howells 1974; Hinch 1977). Numerical simulations also showed that
the Brinkman equation still captures the qualitative behaviour even for moderately
concentrated porous media (Durlofsky & Brady 1987).

The Brinkman equation has been employed to address the effects of viscous
heterogeneous environment on locomotion performance. Leshansky (2009) considered
the propulsion of an infinite waving sheet with transverse distortions and a rotating
helical filament, and showed that the propulsion speed and swimming efficiency of
these swimmers are always enhanced compared with swimming in a purely viscous
medium. Experiments and modelling on locomotion of nematodes in wet particulate
media also found greater distances travelled per undulation compared with the case
without particles (Jung 2010). However, the presence of obstacles does not always
enhance locomotion performance. The propulsion speed of an infinite waving sheet
propagating a longitudinal travelling wave was shown to remain unaffected but the
propulsion efficiency is diminished (Leshansky 2009). Recently, Ho & Olson (2016)
performed asymptotic calculations for an infinite waving cylindrical tail with lateral
and spiral displacements in a Brinkman fluid and studied finite-length swimmers
numerically using the method of regularized Brinkmanlets (Cortez et al. 2010). It
was found that the swimming speed of these swimmers can be enhanced for specific
combinations of permeability and geometric parameters of the swimmer. When the
kinematics of the swimmer is not prescribed but emerges as a result of fluid–structure
interactions, the propulsion speed and efficiency display non-monotonic variations with
permeability (Leiderman & Olson 2016). As a remark, while many studies (including
the present work) treat the embedded obstacles as a stationary network, the effect
of network deformability on locomotion has also been considered by modelling
the network and solvent as two coupled elastic and viscous continuum phases
(Fu et al. 2010).

In addition to flagellated swimmers described above, propulsion of ciliates (such as
Volvox and Paramecium) in heterogeneous viscous media has also been considered via
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556 H. Nganguia and O. S. Pak

the squirmer model by Leshansky (2009). Squirmers were first studied by Lighthill
(1952) and Blake (1971) as idealized models for ciliary propulsion, where the beating
of cilia is represented by surface velocities on the spherical cell body (Pedley 2016).
The squirmer model has become popular as a general locomotion model because the
surface velocities can be adjusted to represent different types of swimmers in the
far field (Ishikawa, Simmonds & Pedley 2006; Drescher, Goldstein & Tuval 2010;
Michelin & Lauga 2011; Doostmohammadi, Stocker & Ardekani 2012; Wang &
Ardekani 2012; Zöttl & Stark 2012; Yazdi, Ardekani & Borhan 2015; Chisholm et al.
2016). Stone & Samuel (1996) applied the reciprocal theorem (Happel & Brenner
1973) to calculate the propulsion speed of a squirmer in a Newtonian fluid without
knowledge of the surrounding flow. Leshansky (2009) adopted the same approach to
calculate the propulsion speed of a squirmer in a Brinkman medium. The reciprocal
theorem approach, however, cannot get as far regarding the calculation of power
dissipation, which involves gradients of the surrounding flow. The power dissipation
and swimming efficiency of a squirmer therefore can only be determined when the
flow surrounding the squirmer is known. An analytical solution of the flow around a
squirmer was obtained by Lighthill (1952) and Blake (1971) in Stokes flows, but the
solution remains unknown in Brinkman flows. The energetic cost and efficiency of
squirming in porous media hence are not yet quantified. The lack of knowledge about
the surrounding flow also prevents a general understanding of the flow structure and
characteristics of swimming in heterogeneous viscous media.

In this work, we fill in the above missing information by extending the classical
analyses by Lighthill (1952) and Blake (1971) on squirming motion in a purely
viscous fluid to the case of a heterogeneous viscous medium. The geometrical
simplicity of the squirmer model allows one of few exact solutions for locomotion
problems in a Brinkman medium. We employ the solution to examine the modifications
of the flow structure around a squirmer due to the presence of a network of
stationary obstacles. Our results lay the foundation for subsequent studies on
hydrodynamic interactions as well as nutrient transport and uptake by micro-organisms
in heterogeneous viscous media (Magar, Goto & Pedley 2003; Michelin & Lauga
2011).

The paper is organized as follows. We formulate the problem mathematically in
§ 2 before presenting the solution to two problems related to the squirming motion:
the pumping problem (§ 3.1) and the swimming problem (§ 3.2). With knowledge
of the flow field, we calculate and discuss the propulsion speed, power dissipation
and swimming efficiency of a squirmer in a Brinkman medium (§ 3.2.2). In § 4, we
analyse the flow structure of squirming in a Brinkman medium and compare with the
corresponding Stokes flows, before some concluding remarks in § 5.

2. Formulation
2.1. The squirmer model

We consider a steady, spherical squirmer of radius a with tangential surface velocity
distribution decomposed into a series of Legendre polynomials of the form (Lighthill
1952; Blake 1971; Pedley 2016)

u(r= a)=
∞∑

n=1

BnVn(cos θ)eθ , (2.1)

where Vn = −2P1
n(cos θ)/[n(n + 1)], P1

n(cos θ) represents an associated Legendre
function of the first kind, and θ is the polar angle measured from the axis of
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symmetry. For squirming motion in Stokes flow, the Bn modes can be related to
Stokes singularity solutions. In particular, the B1 mode corresponds to a source dipole
in Stokes flows and is the only mode contributing to propulsion. The B2 mode,
corresponding to a Stokes force dipole, is the slowest decaying spatial mode and
thus dominates the far-field velocity generated by the squirmer. Therefore, often
only the first two modes, B1 and B2, of the series are considered in locomotion
problems (Ishikawa & Hota 2006; Ishikawa & Pedley 2008; Doostmohammadi et al.
2012; Wang & Ardekani 2012; Zöttl & Stark 2012; Li & Ardekani 2014; Datt et al.
2015; Yazdi et al. 2015; Chisholm et al. 2016). Since the B2 mode corresponds to
the force dipole exerted on the fluid by the swimmer to generate propulsion, the
relative signs of B1 and B2 modes can be adjusted to represent different types of
swimmers (Pedley 2016). These include pushers (β2 = B2/B1 < 0), which obtain
their thrust from their rear (e.g. Escherichia coli), and pullers (β2 > 0), which obtain
their thrust from their front (e.g. Chlamydomonas), and neutral squirmers (β2 = 0).
Although squirmers with tangential surface velocities are more commonly studied in
the literature (Pedley 2016), we also present results on squirming with radial surface
velocities in appendix A for completeness.

2.2. Governing equation
The incompressible flow around a spherical squirmer in a heterogeneous viscous
medium is modelled by the Brinkman equation (1.1). We non-dimensionalize lengths
by the squirmer radius a, velocities by the first mode of actuation B1, and pressure
by µB1/a. The dimensionless Brinkman equation is given by

−∇
∗p∗ +1∗u∗ − δ2u∗ = 0, ∇∗ · u∗ = 0, (2.2)

where the dimensionless group δ = aα compares the squirmer radius a to the
Brinkman screening length α−1. As δ approaches zero, the Brinkman equation
reduces to the Stokes equation; for large δ, the equation reduces to the Darcy
equation. Dimensionless variables are denoted by stars (∗) above. Henceforth we
shall only work in dimensionless quantities unless otherwise stated and therefore drop
the stars (∗) for convenience. With these non-dimensionalizations, the dimensionless
tangential surface velocity distribution on a squirmer is given by

u(r= 1)=
∞∑

n=1

βnVn(cos θ)eθ , (2.3)

where βn = Bn/B1.
Owing to the axisymmetry of the problem, we can express the velocity flow field

u= uer + veθ in terms of the Stokes stream function (Happel & Brenner 1973),

u=
1

r2 sin θ
∂ψ

∂θ
, v =−

1
r sin θ

∂ψ

∂r
, (2.4a,b)

to satisfy the continuity equation. The dimensionless Brinkman equation (2.2) in terms
of the Stokes streamfunction therefore becomes

D2(D2
− δ2)ψ = 0, (2.5)

where the operator

D2
≡
∂2

∂r2
+

sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
. (2.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

68
5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
B 

Li
br

ar
ie

s,
 o

n 
19

 S
ep

 2
01

8 
at

 1
5:

22
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.685
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


558 H. Nganguia and O. S. Pak

By splitting the streamfunction into ψ = ψ (1)
+ ψ (2) with D2ψ (1)

= 0 and (D2
−

δ2)ψ (2)
= 0, a general solution of (2.5) can be obtained via separation of variables

as (Zlatanovski 1999; Palaniappan 2014)

ψ =

∞∑
n=1

fn(r) sin θ P1
n(cos θ), (2.7)

where

fn(r)=
{

Cnr−n
+Dnrn+1

+
r1/2

δ2
[EnKn+1/2(δr)+ FnIn+1/2(δr)]

}
, (2.8)

and In+1/2(δr) and Kn+1/2(δr) are, respectively, the modified Bessel functions of the
first and second kinds. The coefficients Cn, Dn, En and Fn are determined from the
boundary conditions in the following problems.

3. Squirming motion in a Brinkman medium
Owing to the linearity of the Stokes and Brinkman equations, we can decompose

the locomotion problem into two separate steps, namely the pumping problem (§ 3.1)
and the swimming problem (§ 3.2), to better illustrate the solution structure (Pak &
Lauga 2014; Schmitt & Stark 2016). In the first step – the pumping problem – the
squirmer is not allowed to move but is held fixed in space by an external force. A net
flow uP is generated as a result of the surface actuation on the squirmer, (2.3); the
squirmer acts as a pump in this case. In the second step – the swimming problem –
the squirmer is allowed to move freely at a swimming velocity, U, which induces a
flow due to the translational motion uT . The overall flow field around a self-propelling
squirmer u= uP+ uT can then be considered as a superposition of the solution of the
pumping problem and the flow field due to the induced translation.

3.1. Pumping problem
We employ the general solution (2.7) with (2.8) to determine the flow generated by a
squirmer held fixed in the pumping problem, uP. In the laboratory frame, the flow in
the far field (r→∞) decays to zero, which demands the growing terms in (2.8) to
vanish, i.e. Dn = Fn = 0 for n > 1. At the surface of the squirmer (r= 1), we require
the radial velocity u to vanish and the tangential surface velocity distribution v to
match with that in (2.3). In terms of the Stokes streamfunction, these conditions are
given by

Cn +
Kn+1/2(δ)

δ2
En = 0, (3.1)

−nCn +

[
Kn+1/2(δ)

2δ2
−

Kn−1/2(δ)+Kn+3/2(δ)

2δ

]
En =−

2
n(n+ 1)

βn, (3.2)

respectively. The system of (3.1) and (3.2) is solved to obtain the coefficients

Cn =
4Kn+1/2(δ)βn

n(n+ 1)[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]
,

En =
−4δ2βn

n(n+ 1)[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]
.

 (3.3)
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Squirming in a Brinkman medium 559

Upon substitution of these coefficients into the streamfunction, the flow field in the
pumping problem uP = uPer + vPeθ is determined as

uP =
2[eδ−rδ(1+ rδ)− (1+ δ)]

r3δ2
cos θ

+

∞∑
n=2

4r−2−nβn[Kn+1/2(δ)− rn+1/2Kn+1/2(rδ)]Pn(cos θ)
[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]

, (3.4)

vP =
eδ−rδ(1+ rδ + r2δ2)− (1+ δ)

r3δ2
sin θ

+

∞∑
n=2

−r−2−nβnVn(cos θ)
[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]

× [−2nKn+1/2(δ)+ δrn+3/2Kn−1/2(rδ)− rn+1/2Kn+1/2(rδ)+ δrn+3/2Kn+3/2(rδ)].

(3.5)

For the special case of a two-mode squirmer commonly studied in the literature
(Pedley 2016), the above solution reduces to uP = uP,B1 + β2uP,B2 , where

uP,B1 =
2[eδ−rδ(1+ rδ)− (1+ δ)]

δ2r3
cos θ er +

eδ−rδ(1+ rδ + r2δ2)− (1+ δ)
δ2r3

sin θ eθ ,
(3.6)

uP,B2 =
eδ−rδ(3+ 3rδ + r2δ2)− (3+ 3δ + δ2)

2δ2(1+ δ)r4
[1+ 3 cos(2θ)]er

+
eδ−rδ(6+ 6rδ + 3r2δ2

+ r3δ3)− 2(3+ 3δ + δ2)

2δ2(1+ δ)r4
sin(2θ)eθ . (3.7)

The structure of the flow given by (3.6) and (3.7) in the pumping problem will be
studied in terms of singularities in Brinkman flows in § 4.

3.2. Swimming problem

When the squirmer is allowed to move freely, the overall flow field u=uP+uT has an
additional component uT due to the translation of the spherical body at the unknown
swimming speed U in a Brinkman medium. The exact solution to this translational
problem is given by (Howells 1974)

uT = U cos θ
[

3+ 3δ + δ2
− 3eδ−δr(1+ rδ)
r3δ2

]
er

+U sin θ
[

3+ 3δ + δ2
− 3eδ−δr(1+ rδ + r2δ2)

2r3δ2

]
eθ . (3.8)
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560 H. Nganguia and O. S. Pak

The unknown swimming speed U in the overall flow field u= uP + uT , where uP is
given by (3.4) and (3.5), is then determined by enforcing the force-free condition on
the squirmer, ∫

S
T · n dS= 0, (3.9)

where the dimensionless stress T = −pI + γ̇ and the rate-of-strain tensor γ̇ = ∇u +
(∇u)T. The force-free condition (3.9) therefore leads to a propulsion speed

U =
6(1+ δ)

9+ 9δ + δ2
, (3.10)

which agrees with the results obtained by Leshansky (2009) via the reciprocal theorem.
The swimming speed (3.10) in dimensional form reads Ũ = 6(1+ δ)B1/(9+ 9δ + δ2).
Similar to squirming in Stokes flows, only the B1 mode out of all squirming modes
in (2.3) contributes to propulsion. The propulsion speed monotonically decreases with
increasing δ as shown in figure 2(a).

3.2.1. Flow around a squirmer in a Brinkman medium
The use of the reciprocal theorem is effective in bypassing calculations of the flow

field to obtain the swimming speed. However, information such as power dissipation,
swimming efficiency and nutrient uptake of the squirmer cannot be obtained without
knowledge of the flow around the squirmer. Here we fill in this missing information
by substituting the swimming speed (3.10) into the overall flow u=uP+uT and obtain
an analytical solution for the flow around a squirmer in a Brinkman medium,

u =
[4(1+ δ)+ 2eδ−rδ(1+ rδ)] cos θ

r3(9+ 9δ + δ2)

+

∞∑
n=2

4r−2−nβn[Kn+1/2(δ)− rn+1/2Kn+1/2(rδ)]Pn(cos θ)
[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]

, (3.11)

v =
[2(1+ δ)+ eδ−rδ(1+ rδ + r2δ2)] sin θ

r3(9+ 9δ + δ2)

+

∞∑
n=2

−r−2−nβnVn(cos θ)
[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]

× [−2nKn+1/2(δ)+ δrn+3/2Kn−1/2(rδ)− rn+1/2Kn+1/2(rδ)+ δrn+3/2Kn+3/2(rδ)].
(3.12)

In particular, for a two-mode squirmer the solution reduces to u= uB1 + β2uB2 , where

uB1 =
[4(1+ δ)+ 2eδ−rδ(1+ rδ)] cos θ

r3(9+ 9δ + δ2)
er +
[2(1+ δ)+ eδ−rδ(1+ rδ + r2δ2)] sin θ

r3(9+ 9δ + δ2)
eθ ,

(3.13)

uB2 = uP,B2

=
eδ−rδ(3+ 3rδ + r2δ2)− (3+ 3δ + δ2)

2δ2(1+ δ)r4
[1+ 3 cos(2θ)]er

+
eδ−rδ(6+ 6rδ + 3r2δ2

+ r3δ3)− 2(3+ 3δ + δ2)

2δ2(1+ δ)r4
sin(2θ)eθ . (3.14)
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FIGURE 1. (Colour online) Streamlines and local speed of the dimensionless flow
surrounding a self-propelling squirmer in (a) Stokes and (b) Brinkman flows with β2=−1
(a pusher). The dimensionless resistance δ = 1. The arrows on the squirmers indicate the
swimming direction and the colour represents the magnitude of local flow velocity. The
streamlines of a puller (β2 = 1) can be readily obtained by an upside-down flipping of
the streamlines of the corresponding pusher about the horizontal axis. The presence of a
network of obstacles alters the flow features around the squirmer. The flow structure and
far-field behaviours are discussed in § 4.

The presence of a network of obstacles alters the flow features around the squirmer.
We plot in figure 1(b) the flow surrounding a self-propelling squirmer with β2=−1 (a
pusher) in a Brinkman medium in contrast to the Stokes case (figure 1a). We remark
that the flow due to the second mode is the same in the pumping and swimming
problems because this mode has no contribution to swimming motion (Pak & Lauga
2014; Pedley 2016). We will analyse the structure of the flow given by (3.13) and
(3.14) in the swimming problem in terms of singularities in Brinkman flows in § 4.

3.2.2. Power dissipation and swimming efficiency
While swimming speed is an important property of locomotion, efficiency is

another measure of performance that a swimmer may maximize to move through a
medium in an energetically favourable manner. It is therefore biologically relevant to
investigate how the properties of a swimmer and its surrounding medium influence
the efficiency of locomotion. The classical definition of thermodynamic efficiency
was proved difficult to apply in swimming at low Reynolds number (Childress 2012).
Lighthill introduced the Froude efficiency, a concept coming from propeller theory, to
characterize the efficiency of low-Reynolds-number swimmers (Lighthill 1952, 1975).
The swimming efficiency is defined as

η=
FDU
P

, (3.15)

which compares the total power dissipation P in the fluid during the swimming
motion with a useful power output FDU, defined as the power against the drag FD

in moving a rigid body of identical shape as the swimmer at the swimming speed
U. This standard definition has been widely adopted to characterize the efficiency
of different low-Reynolds-number swimmers (Childress 1981; Stone & Samuel 1996;
Chattopadhyay et al. 2006; Leshansky et al. 2007; Tam & Hosoi 2007; Michelin &
Lauga 2010; Ishimoto & Gaffney 2014; Wiezel & Or 2016).
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FIGURE 2. Propulsion performance of a squirmer in a Brinkman medium. (a) Swimming
speed U scaled by the corresponding Stokes case US as a function of dimensionless
resistance δ. (b) Swimming efficiency η of a neutral squirmer (β2=B2/B1= 0, solid line)
and a puller/pusher (β2=±1, both represented by the dashed line) in a Brinkman medium.
Inset: Swimming efficiency scaled by the corresponding Stokes case ηS.

In a Brinkman medium, the drag experienced by a sphere translating at speed U is
given by (Howells 1974; Leshansky 2009; Cortez et al. 2010)

FD = 6π

(
1+ δ +

δ2

9

)
U, (3.16)

and the swimming speed is given by (3.10). We remark that in Stokes flows, the drag
on a sphere is the same whether the sphere is translating in a quiescent flow or there is
a uniform flow past a stationary sphere. However, in Brinkman flows, the drag in these
two scenarios are different because there is a finite pressure gradient at infinity for a
uniform flow due to the additional resistance in the Brinkman equation (Feng, Ganatos
& Weinbaum 1998; Cortez et al. 2010). The pressure gradient induces a greater drag
on the sphere for the case of a uniform flow past a stationary sphere, which is given
by 6π(1+ δ+ δ2/3)U. Since we are considering the motion of an active particle, we
follow Leshansky (2009) and use the drag on a translating sphere here. The calculation
of power dissipation P = −

∫
T · n · u dS requires detailed information of the flow

around a squirmer u and its gradients. We employ the solution given by (3.13) and
(3.14) to derive the power dissipation of a two-mode squirmer as

P =
8π

15

[
5(18+ 18δ + 3δ2

+ δ3)

9+ 9δ + δ2
+
(5+ 5δ + δ2)β2

2

1+ δ

]
, (3.17)

which reduces to the results by Lighthill (1952) and Blake (1971) in Stokes flow, PS=

8π(2+ β2
2 )/3, in the limit of δ→ 0. Alternatively, one can also calculate the power

dissipation P by summing the viscous dissipation and rate of work done on the flow
by the Brinkman term, which gives the same result as (3.17).

We first probe the asymptotic behaviour of power output FDU and power dissipation
P in small δ for a neutral squirmer as an illustration. The power output scales linearly
with δ as FDU∼ 8π/3(1+ δ), while the power dissipation increases only quadratically
as P ∼ 16π/3(1 + δ2/18). The slower rate of increase in power dissipation with δ
compared with power output implies enhancement in swimming efficiency at least for
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small δ. We substitute the results (3.10), (3.16) and (3.17) into (3.15) to obtain the
swimming efficiency in a Brinkman flow,

η=
45(1+ δ)3

5(1+ δ)(18+ 18δ + 3δ2 + δ3)+ (5+ 5δ + δ2)(9+ 9δ + δ2)β2
2
, (3.18)

for a two-mode squirmer. In the limit δ → 0, the efficiency in Stokes flow
ηS = 1/(2 + β2

2 ) is recovered (Lighthill 1952; Blake 1971). In figure 2(b), the
swimming efficiency of a neutral squirmer (β2 = 0, solid line) and pullers/pushers
(β2 = ±1, dashed line) are displayed. The swimming efficiency is indeed enhanced
for small δ. We note that non-Newtonian fluid rheology can influence the swimming
efficiency of a pusher and a puller in different manners (Zhu, Lauga & Brandt 2012;
De Corato, Greco & Maffettone 2015); in contrast, here the additional resistance in a
Brinkman medium influences the efficiency of a pusher and a puller indifferently, as
shown in figure 2(b) and by the even powers of β2 in (3.18). While the propulsion
speed monotonically decreases as shown in figure 2(a), the swimming efficiency
displays non-monotonic variations. The efficiency can be enhanced relative to the
case of squirming in Stokes flows. There exists an optimal value of dimensionless
resistance δ maximizing the swimming efficiency. Beyond a certain resistance
δ ∼ O(10), both the swimming speed and efficiency are diminished compared
with the case in Stokes flow. Leiderman & Olson (2016) demonstrated that the
swimming efficiency can vary non-monotonically with the additional resistance for
some flexible swimmers where their waveforms are emergent properties resulting from
fluid–structure interactions. Here via the squirmer model we add that a swimmer with
a fixed swimming gait can also display similar non-monotonic variations of swimming
efficiency as a function of the additional resistance.

Finally, we discuss potential biological relevance of these results. Previous studies
have shown the relevance of the Brinkman equation in modelling swimming cells in
some biological scenarios (Leshansky 2009; Ho & Olson 2016; Leiderman & Olson
2016). For instance, thorough discussions are given in Leiderman & Olson (2016) for
swimming sperm cells in vaginal and cervical mucus. The average spacing between
fibres was estimated to be in the range 1–100 µm for cervical and vaginal fluids
assuming randomly oriented fibres (Saltzman et al. 1994). It was also reported that
interfibre spacing varies strongly through the menstrual cycle, ranging from less than
1 µm to 25 µm around ovulation (Rutllant et al. 2005). A sperm cell has a head
size of 3–5 µm. The Brinkman model is thus more appropriate during ovulation when
the sperm cell is able to swim through the mucus without too many encounters with
mucin fibres.

Within the Brinkman assumption, we try to estimate the relevant values of δ = aα
with reported data. Assuming randomly oriented fibres, the screening length α−1 can
be estimated from the relation α2b2

= 4φ{α2b2/3 + 5αbK1(αb)/[6K0(αb)]} given the
fibre volume fraction φ and fibre radius b. The fibre volume fraction of cervical
mucus φ has been reported to be O(0.01) with fibre radii ranging between 15 and
500 nm. The above relation with these data yields a screening length α−1 in the range
of 0.1–4 µm. For a squirmer with radius a= 2.5 µm, δ is estimated to have a range
between 0.6 and 25. In this range, the swimming efficiency can vary from a reduction
around 30 % (for δ = 25) to a more than twofold enhancement (for δ ≈ 3) compared
with the efficiency in a purely viscous fluid medium. These estimates show that the
swimming efficiency depends sensitively on the cell size and properties of the fibre
network. Hence, to better evaluate the biological significance, models incorporating
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more realistic geometrical features of swimming cells and fibre network would be
required. Here we utilize a highly idealized geometric model amenable to analytical
calculations only to identify essential features of swimming within the Brinkman
approximation. We also remark that the results for moderate to large values of δ
may not be quantitatively accurate using the Brinkman approach, because the mesh
size of the network is relatively small compared with the cell size in these regimes.
The results in these regimes can be improved by numerical approaches modelling the
obstruction matrix as stationary spheres (Durlofsky & Brady 1987; Leshansky 2009).
Models and boundary conditions accounting for non-stationary network and elastic
interactions with the network would also be relevant in these biologically relevant
regimes (Fu et al. 2010).

4. Flow structures of squirming motion in a Brinkman medium

In previous sections, we have extended the results by Lighthill (1952) and Blake
(1971) on squirming in Stokes flows to include the effect of additional resistance in
Brinkman flows. The flow around a squirmer in the Stokes regime can be considered
in terms of fundamental singularities in Stokes flows. Such a representation is useful
for constructing simple locomotion models and understanding the structure and spatial
decay of the flow.

In this section, we analyse the flow structure and far-field behaviour of the solution
to the pumping problem, equations (3.6) and (3.7), and to the swimming problem,
(3.13) and (3.14). We represent the flow in terms of fundamental singularities in
Brinkman flows and highlight the similarities and differences compared with Stokes
flows.

4.1. Flow singularities in a Brinkman medium
4.1.1. Brinkmanlet

In dimensionless form, the velocity field generated by a point force at the origin
(also known as a Brinkmanlet, or a ‘shielded Stokeslet’) is given by B=I ·F, where
the Brinkman propagator (Howells 1974)

I =
2
δ2r3
[(1+ δr+ δ2r2) e−δr − 1]I +

6
δ2r5
[1− (1+ δr+ δ2r2/3)e−δr] rr, (4.1)

and F is the point force non-dimensionalized by 8πµaB1. A Brinkmanlet due to a
point force in the z-direction is given by

B(ez)=
4[1− e−rδ(1+ rδ)]

δ2r3
cos θ er −

2[e−rδ(1+ rδ + r2δ2)− 1]
δ2r3

sin θ eθ . (4.2)

The Brinkmanlet B reduces to the ordinary Stokeslet G in the Stokes limit δ → 0.
We contrast the flows generated by a Stokeslet (figure 3a) and that by a Brinkmanlet
(figure 3b). In a viscous fluid, a Stokeslet G decays as 1/r in the far field, whereas
a Brinkmanlet decays much faster as 1/r3 in a porous medium because the velocity
disturbance is screened (Koch & Brady 1985; Koch, Hill & Sangani 1998; Long &
Ajdari 2001).
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FIGURE 3. (Colour online) Fundamental singularities in Stokes and Brinkman flows.
Streamlines and local speed of the flow due to a point force in (a) Stokes flows (termed
a Stokeslet) and (b) Brinkman flows (termed a Brinkmanlet). In (c,d), the flow due to a
Stokes force dipole and Brinkman force dipole are shown, respectively. The dimensionless
resistance δ = 1. The colour represents the magnitude of local flow velocity.

4.1.2. Brinkman dipole
A Stokes dipole can be obtained by taking a derivative of a Stokeslet, which

corresponds to the flow generated by two point forces in Stokes flows. The specific
arrangement of the force dipole can represent different types of swimmers (pushers,
pullers, or neutral swimmers; see § 2.2). Similarly, a Brinkman dipole BD can be
obtained by taking a derivative of a Brinkmanlet (directed in the α1-direction) along
the direction α2 as BD(α1, α2) = α2 · ∇B(α1). For instance, a Brinkman dipole with
α1 = α2 = ez (the two point forces pointing towards each other) produces the flow

BD(ez, ez) = −
[3− e−rδ(3+ 3rδ + r2δ2)][1+ 3 cos(2θ)]

r4δ2
er

−
[6− e−rδ(6+ 6rδ + 3r2δ2

+ r3δ3)] sin(2θ)
r4δ2

eθ . (4.3)

We plot in figure 3(c,d) a Stokes dipole and a Brinkman dipole, respectively, for
comparison. A Brinkman dipole BD decays as 1/r4 in contrast to a Stokes dipole GD,
which decays as 1/r2. As a remark, unlike a Stokes dipole GD, which generates only
radial flows, the Brinkman dipole BD generates both radial and tangential flows.

4.2. Flow representation by singularities and far-field behaviours
4.2.1. The pumping problem

In the pumping problem, the flow is generated by a squirmer held fixed in space
by an external force. We therefore expect the presence of a point force in the
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566 H. Nganguia and O. S. Pak

decomposition in terms of singularities. Indeed, the flow due to the B1 mode in the
pumping problem (3.6) can be expressed as a combination of Brinkmanlet B and
source dipole S as

uP,B1 =−
eδ

2
B+

eδ − 1− δ
δ2

S, (4.4)

where the source dipole S = (2 cos θ er + sin θ eθ)/r3. We contrast the flow due to
the B1 mode in the pumping problem in the Stokes regime (figure 4a) with that in
the Brinkman regime (figure 4b). In a purely viscous fluid, the far-field behaviour is
dominated by a Stokeslet, which decays slowly as 1/r. In a Brinkman medium, the
flow due to the B1 mode decays rapidly as 1/r3 but the far-field behaviour is not
dominated by only the Brinkmanlet; instead, the Brinkmanlet B and source dipole S
both decay as 1/r3 and contribute to the far-field behaviour.

The flow induced by the B2 mode remains the same in the pumping (3.7) and
swimming (3.14) problems, because this mode does not contribute to swimming (Pak
& Lauga 2014; Pedley 2016). The B2 mode in a Stokes flow represents the action
of a force dipole and therefore contains the signature of the propulsion mechanism.
Similarly the flow due to the B2 mode in a Brinkman flow,

uP,B2 = uB2 =
eδ

2(1+ δ)
BD +

3eδ − (3+ 3δ + δ2)

2δ2(1+ δ)
Q, (4.5)

contains a Brinkman dipole BD given by (4.3) plus a source quadrupole Q = {[1 +
3 cos(2θ)] er + 2 sin(2θ) eθ }/r4. The flow due to the B2 mode in the Stokes regime
(figure 4c) is compared with that in a Brinkman medium (figure 4d). In Stokes flows,
the force dipole decays as 1/r2 and dominates the source quadrupole in the far field.
In contrast, in a Brinkman medium the force dipole and source quadrupole both decay
as 1/r4 in the far field.

4.2.2. The swimming problem
In Stokes flows, for a squirmer held fixed in space by an external force (the

pumping problem), the B1 mode induces a Stokeslet in the surrounding flow. When
the external force is removed, the squirmer with the B1 mode self-propels at a speed
such that the total force acting on the squirmer becomes zero. In terms of flow
singularities, one can find that the Stokeslet induced by the translational motion of
the squirmer cancels exactly the Stokeslet component in the pumping problem. As a
result, the flow surrounding a self-propelling squirmer does not contain any Stokeslets
but only a source dipole, which does not contribute a net force and decays as 1/r3

(figure 4e). For a two-mode squirmer (pusher or puller) in Stokes flows, the force
dipole in the B2 mode decays as 1/r2 and hence dominates the source dipole in the B1
mode in the far field. These flow characteristics allow far-field models distinguishing
pushers and pullers to be effectively constructed in Stokes flows.

However, a self-propelling squirmer has more complex flow structures in a
Brinkman medium. Analogous to Stokes flows, the translation of a spherical
body induces a Brinkmanlet B plus a source dipole S . The exact solution in
(3.8) can be expressed in terms of singularities in Brinkman flows as uT =

U{3eδB/2 − [3eδ − (3 + 3δ + δ2)]S/δ2
}/2. However, unlike Stokes flows, the

Brinkmanlet and the source dipole both contribute to the net force. When the
squirmer is allowed to swim freely, the Brinkmanlet induced by the translational
motion thus does not completely cancel the Brinkmanlet component in the pumping
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FIGURE 4. (Colour online) Streamlines, local speed and far-field decay of the flow
around a squirmer in the pumping and swimming problems. Flow around a squirmer
with B1 mode held fixed by an external force in the pumping problem in (a) Stokes and
(b) Brinkman flows (B1 = 1, δ = 1). Panels (c,d) display, respectively, the flow due to
the B2 mode in Stokes and Brinkman flows (B2 =−1, δ = 1), which remain the same in
pumping and swimming problems because the B2 mode does not contribute to propulsion.
Panels (e, f ) show the flow around a self-propelling squirmer with B1 mode in Stokes and
Brinkman flows, respectively (B1= 1, δ= 1). The colour represents the magnitude of local
flow velocity.

problem. Instead, the flow surrounding a self-propelling squirmer, given by (3.13) and
(3.14), is represented by a combination of Brinkmanlet and source dipole,

uB1 =−
δ2eδ

2(9+ 9δ + δ2)
B+

eδ + 2(1+ δ)
9+ 9δ + δ2

S. (4.6)
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Here both the Brinkmanlet and source dipole decay as 1/r3, contributing to the overall
1/r3 decay in the far field. We remark that, although the flow around a self-propelling
squirmer due to the B1 mode decays as 1/r3 in both Stokes and Brinkman flows
(figure 4e, f ), they have different types of constituent singularities. The Stokes flow
contains only a source dipole, while the Brinkman flow contains both a Brinkmanlet
and a source dipole.

The B2 mode corresponds to the force dipole exerted on the fluid by the swimmer
to generate propulsion. It thus contains information about the propulsion mechanism
of different types of swimmers (pushers versus pullers). The additional resistance
in porous media has substantial modifications on the far-field behaviours of these
two-mode squirmers. In Stokes flows, the B2 mode dominates the flow in the far field,
meaning that the propulsion mechanism of the swimmer determines the character of
the far-field flow. However, in Brinkman flows the B2 mode (decaying as 1/r4) has
a faster spatial decay than the B1 mode (1/r3). This implies that different types of
swimmers (pushers versus pullers) then become less distinguishable in the far field in
porous media compared with the corresponding Stokes case. These qualitative changes
may result in significant differences in hydrodynamic interactions and collective
behaviours observed in Stokes flows, especially phenomena critically dependent on
the difference in propulsion mechanisms of pushers and pullers (Marchetti et al. 2013;
Saintillan & Shelley 2015; Saintillan 2018).

5. Concluding remarks
In this work, we consider a canonical model swimmer, the squirmer, to study

locomotion in heterogeneous viscous media described by the Brinkman equation. The
use of an idealized model allows an analytical and exact solution to the Brinkman
equation. Our analysis extends the classical results by Lighthill (1952) and Blake
(1971) in Stokes flows to Brinkman flows. The results enable the calculation of
the flow surrounding the squirmer and hence its power dissipation and swimming
efficiency, complementing information on propulsion speed previously obtained via
the reciprocal theorem (Leshansky 2009).

Although the propulsion speed of a squirmer with tangential surface velocities
decreases monotonically with the additional resistance in a Brinkman medium
(Leshansky 2009), we show that the swimming efficiency can be enhanced relative to
the Stokes case. There exists an optimal value of dimensionless resistance maximizing
the swimming efficiency. We also examine the structure of the flow surrounding a
squirmer in terms of singularities and study the far-field behaviours of squirming in
a Brinkman medium. In stark contrast to the Stokes case, our results reveal that the
second mode, which contains the signature of the propulsion mechanism, decays faster
than the first mode (the swimming mode) in a Brinkman medium. The difference
between pushers and pullers thus becomes less distinguishable in the far field of a
Brinkman medium. Its consequence on the hydrodynamic interaction and collective
behaviours of swimmers observed in Stokes flows presents an interesting subject for
future studies. Our results on the flow surrounding a squirmer also enable subsequent
analyses on nutrient transport and uptake by micro-organisms in heterogeneous
viscous environments (Magar et al. 2003; Michelin & Lauga 2011). Future work in
these directions is currently under way.
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Appendix A. Squirming with radial surface velocities
Although squirmers with tangential surface velocities are more commonly studied

in the literature (Pedley 2016), we also present in this appendix results on squirming
with radial surface velocities for completeness. Similar to squirming with tangential
surface velocities, the propulsion speed of a squirmer with radial surface velocities in
a Brinkman medium can be obtained via the reciprocal theorem without knowing the
surrounding flow (Leshansky 2009). However, the calculation of power dissipation
and swimming efficiency relies on knowledge of the surrounding flow. By following
similar procedures outlined in § 2, we can readily obtain the associated flow field
around the squirmer, which enables the calculations of its power dissipation and
swimming efficiency.

A.1. Flow around a self-propelling squirmer with radial surface velocities
Following the formulation by Lighthill (1952) and Blake (1971), the radial surface
velocities on a squirmer in dimensional form can be expressed as

u(r= a)=
∞∑

n=1

AnPn(cos θ)er, (A 1)

where An and Pn(cos θ) represent a radial mode of surface velocity and a Legendre
function, respectively. Following the solution method outlined previously with the
boundary condition for radial surface velocity given in (A 1), we can obtain the
velocity field around a self-propelling squirmer in the laboratory frame as

u =
[1+ δ + δ2

− eδ−rδ(1+ rδ)] cos θ A1

r3δ2
+U cos θ

[
3+ 3δ + δ2

− 3eδ−rδ(1+ rδ)
r3δ2

]
+

∞∑
n=2

−r−2−nAnPn(cos θ)
[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]

× [δKn−1/2(δ)−Kn+1/2(δ)+ δKn+3/2(δ)− 2nrn+1/2Kn+1/2(rδ)], (A 2)

v =
[1+ δ + δ2

− eδ−rδ(1+ rδ + r2δ2)] sin θ A1

2r3δ2

+U sin θ
[

3+ 3δ + δ2
− 3eδ−rδ(1+ rδ + r2δ2)

2r3δ2

]
+

∞∑
n=2

nr−2−nAnVn(cos θ)
2[−δKn−1/2(δ)+ (1+ 2n)Kn+1/2(δ)− δKn+3/2(δ)]

× [−δKn−1/2(δ)+Kn+1/2(δ)

− δKn+3/2(δ)+ δrn+3/2Kn−1/2(rδ)− rn+1/2Kn+1/2(rδ)+ δrn+3/2Kn+3/2(rδ)],
(A 3)

where U is the unknown swimming speed due to radial surface velocities.
We use the above flow field and enforce the force-free condition (3.9) to obtain the

unknown swimming speed as

U =−
3+ 3δ + δ2

9+ 9δ + δ2
A1, (A 4)
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which agrees with the results obtained via the reciprocal theorem by Leshansky (2009).
Similar to squirming in Stokes flows, only the A1 mode contributes to propulsion. In
the limit δ→ 0, the propulsion speed reduces to −A1/3 in the Stokes case (Lighthill
1952; Blake 1971). As the resistance δ increases, the propulsion speed increases
monotonically, in contrast to the case of squirming with tangential surface velocities,
where a monotonic decrease in speed is observed.

A.2. Power dissipation and swimming efficiency
With the knowledge of the flow field, the power dissipation P and swimming
efficiency η can be calculated. For instance, the power dissipation and swimming
efficiency associated with the swimming motion due to the A1 mode are given by

P =
40π(18+ 18δ + 3δ2

+ δ3)(1+ δ)µaA2
1

15(1+ δ)(9+ 9δ + δ2)
(A 5)

and

η=
5(1+ δ)(3+ 3δ + δ2)2

20(18+ 18δ + 3δ2 + δ3)(1+ δ)
, (A 6)

respectively. As expected, we recover the Stokes power dissipation (PS= 16πµaA2
1/3)

and swimming efficiency (ηS= 1/8) in the limit δ→ 0 (Blake 1971). The expressions
for other modes can be obtained in the same manner. Unlike squirming with tangential
surface velocities, in which case an optimal resistance δ maximizing the swimming
efficiency exists, the swimming efficiency for the radial case increases monotonically
with δ. To summarize, both swimming speed and efficiency are enhanced in the case
of squirming with radial surface velocities in a Brinkman medium.
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