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Influence of surface viscosities on the
electrodeformation of a prolate viscous drop

H. Nganguia, a D. Das, b O. S. Pak c and Y.-N. Young *d

Contaminants and other agents are often present at the interface between two fluids, giving rise to

rheological properties such as surface shear and dilatational viscosities. The dynamics of viscous drops

with interfacial viscosities has attracted greater interest in recent years, due to the influence of surface

rheology on deformation and the surrounding flows. We investigate the effects of shear and dilatational

viscosities on the electro-deformation of a viscous drop using the Taylor–Melcher leaky dielectric

model. We use a large deformation analysis to derive an ordinary differential equation for the drop

shape. Our model elucidates the contributions of each force to the overall deformation of the drop and

reveals a rich range of dynamic behaviors that show the effects of surface viscosities and their dependence

on rheological and electrical properties of the system. We also examine the physical mechanisms underlying

the observed behaviors by analyzing the surface dilatation and surface deformation.

1 Introduction

Electric fields are increasingly being employed to manipulate
suspensions of deformable particles in biomedical applications
(separation and detection of infected blood cells, DNA
and protein molecules), drug delivery (electroporation based
therapies), and many other biologically related applications.
In petroleum engineering, electric fields are used to separate
mixed emulsions. In these settings, naturally occurring or
added surfactants often act as demulsifiers and stabilizing
agents for the emulsion.

The effect of electric fields on a clean viscous drop is now
relatively well understood.1 For a leaky dielectric drop freely
suspended in another leaky dielectric fluid, the bulk charge
neutralizes on a fast timescale while ‘‘free’’ charges accumulate
on (and move along) the drop surface. In this physical regime,
the full electrokinetic transport model in a viscous solvent can
be described by a charge-diffusion model that can be further
reduced to the Taylor–Melcher leaky dielectric model.2 In many
physics and engineering applications with moderately dissolv-
able electrolytes, the Taylor–Melcher leaky dielectric model can
capture the deformation of a viscous drop in both dielectric3,4

and conducting media.5,6 In the Taylor–Melcher model, the

balance between the electric stress and the hydrodynamic
stress on the drop surface gives rise to a drop shape and a
flow field that can be parametrized by the conductivity ratio
and the permittivity ratio.7 Under a small electric field, a steady
equilibrium drop shape exists due to the balance between the
electric and hydrodynamic stresses.8–10 For a sufficiently
large electric field, instabilities arise and the drop keeps
deforming until it eventually breaks up into smaller drops.11,12

The Taylor–Melcher model has been extended in recent years to
include the effects of charge relaxation,13 charge convection,14–17

drop shapes,18–21 drop instabilities,10,22–27 and Marangoni
stresses.28–31

Interfacial rheology is characterized by a shear viscosity and
a dilatational viscosity on the drop interface, and may arise
for drops covered with colloidal particles and proteins,32,33

surfactants,34 and as a property of vesicles’ membrane
viscosity.33,35 Studies show a rich range of dynamics over
various physical settings as a result of interfacial rheology. Its
influence on deformation has been investigated for drops in a
linear flow and shown to affect the critical capillary number
for drop breakup.36–38 Numerical simulations have also been
conducted to determine the influence of interfacial rheology in
shear39,40 and extensional flows. For the extensional flow,
Herrada et al.34 found that although surface velocity is reduced,
the surface viscosities have greater effect on drop breakup, and
only minimal effect on the equilibrium deformation. Under the
same flow, Singh and Narsimhan41,42 showed that the dilata-
tional viscosity led to instability, and the shear viscosity acted to
stabilize the drop. Surface viscosities have also been found to
alter the stability of viscous fingering43 as well as play a role in
pinch-off dynamics.44–46
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Recent studies have also begun to investigate the effects of
interfacial rheology on the dynamics of a viscous drop in an
electric field. Mandal et al.47 considered a leaky dielectric drop
and obtained analytical solutions using the small deformation
analysis. In comparison to the clean drop case, they showed
that dilatational viscosity yields larger deformation, while
shear viscosity yields smaller deformation. Han et al.48 instead
considered the case of a conducting drop and concluded that
dilatational viscosity only changes the transient dynamic of
the drop, leaving the steady state deformation unchanged
as the dilatational viscosity increases. While these recent
findings have revealed how interfacial viscosities can alter
electro-deformation of drops in different manners, the results
are limited to the small deformation analysis of a leaky dielec-
tric drop or numerical simulations of a conducting drop with
only surface dilatational viscosity.

For fluid flow driven by an electric field, charges accumulate
at the drop surface that separates media with different electric
properties. Because of the conductivity and permittivity mis-
match between the interior and exterior fluids, the electric field
acting on the surface charges generate a Maxwell stress that
induces fluid flow. By tuning the electric properties, one can
control the circulation in and around the drop: when the
interior fluid is less conducting than the exterior one, the fluid
flow is pole-to-equator. Likewise, one obtains an equator-to-
pole flow when the interior fluid is more conducting than the
exterior one.28,49,50 To examine the influence of these flow
variations and to present a more comprehensive analysis, in
this work we go beyond the small deformation regime and
examine the effect of interfacial viscosities on large electro-
deformations of both leaky dielectric and conducting drops via
a spheroidal model.18,19 Our results provide predictions in the
practically significant regime of large drop deformations and
shed light on the physical mechanisms underlying the observed
electrohydrodynamic behaviors.

This paper is organized as follows. In Section 2, we present
the physical problem, governing equations, and derive the
model for drop deformation. We discuss the main findings in
Section 3, where we first report various effects of surface
rheology on deformation (Section 3.2); we then propose physi-
cal mechanisms behind the observations (Section 3.3). Finally,
we summarize our results and outlook in Section 4.

2 Mathematical formulation

We consider a viscous drop with interfacial viscosities
immersed in a leaky dielectric fluid as shown in Fig. 1(a). Each
fluid is characterized by the fluid viscosity m, dielectric permit-
tivity e, and conductivity s with the subscript denoting interior
(1) or exterior (2) fluid. In this work the subscript ‘‘r’’ denotes
the ratio between exterior and interior quantities: mr = m2/m1,
er = e2/e1, and sr = s2/s1. Typical applications of leaky dielectric
fluids involve drops of mm size under an electric field strength
of kV cm�1.4,8,18,50–53 Hence we assume that the fluid flow
in this system is in the creeping flow regime with negligible

inertia. Moreover, the flow around drops in electric field
depend on the electric ratios sr and er.

12,54 Drops are categor-
ized as prolate ‘A’ or prolate ‘B’. As illustrated in Fig. 1(b), they
differ by the circulation inside the drops: counterclockwise in
the first quadrant (equator-to-pole) for prolate ‘A’ (sr/er o 1),
and clockwise (pole-to-equator) for prolate ‘B’ (sr/er 4 1). The
electric tangential stress vanishes for sr/er = 1, and the drop
remains spherical.

2.1 Governing equations

The fluids are governed by the incompressible Stokes equation,

�rpj + mjr2uj = 0, r�uj = 0 (1)

where j = 1 or j = 2 denote the drop and continuous phases,
respectively, p is the pressure, and u is the velocity field. In the
far-field the flow is quiescent,

u2(x - N) = 0. (2)

The electric field Ej = �rfj, where fj is the electric potential
that satisfies the Laplace equation,

r2fj = 0. (3)

Far away from the drop surface the electric field is the
imposed electric field.

�rf2 = E0z. (4)

At the drop interface, boundary conditions are imposed for
the electric potential f, and the flow field u. The electric
potential is continuous and the total current is conserved,

f½ �½ � ¼ 0; srf � n½ �½ � ¼ 0; (5)

where �½ �½ � denotes the jump between outside and inside quan-
tities. Generally, the jump in the Ohmic current, srf � n½ �½ � is

Fig. 1 (a) Sketch of the problem: an axisymmetric leaky dielectric viscous
drop immersed in another dielectric fluid, with an external electric field E0

in the z direction. The bead-rod particles represent the rheological
properties of the interface (shear and dilatation). (b) Two modes of prolate
shape exist: prolate ‘A’ (PRA) with a counterclockwise circulation in the first
quadrant, and prolate ‘B’ (PRB) with a clockwise circulation in the first
quadrant.
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balanced by charge relaxation and charge convection.7 The effects
of these dynamics on the transient behavior of drops,13 and on
equilibrium deformation,14,17,55 have been investigated analyti-
cally and numerically in the context of drops electrohydro-
dynamics. For a clean drop, both charge relaxation and
convection can yield transient shape transitions and/or over-
shoot. However, charge relaxation does not affect the equili-
brium deformation,13 while charge convection effects depend on
the electric Reynolds number.17,56 In regard to our study, any
effects of charge relaxation and convection will be transitory
(affecting Fig. 5–8 in Section 3). Moreover, we anticipate a small
quantitative change in the equilibrium deformations (due to
charge convection). To further justify the omission of charge
relaxation and convection, we note that these effects are driven
by the Saville (Sa = tc/tp)7,14 and electric Reynold (ReE =
tc/tF)7,17,56 numbers, respectively, where tc,j = ej/sj is the charging
time scale, tp,j = mjr0/g is a characteristic hydrodynamic time
scale, and tF = m1/e2E0

2 is a convective flow time. Using the
experimental data18 for an aqueous KCl drop (s1 = 8 � 1012 pS
m�1, e1 = 68.9 � 8.85 pF m�1, m1 = 0.81 � 10�3 Pa s�1) in
epoxidized linseed oil (s2 = 1.46 � 103 pS m�1, e2 = 6.18 �
8.85 pF m�1, m2 = 339 � 10�3 Pa s�1); we estimate tc E 7.6 �
10�11 s, tp E 2.9 � 10�4 s, and tF E 1.5 � 10�3 s. Thus, tc {
tp o tF which yields Sa { 1 and ReE { 1 and we can assume the
charge relaxation and charge convection to be negligible.

The electric field and the hydrodynamic fluid velocity are
coupled at the drop interface through the stress balance

TH þ TE
� �� �

� n ¼ �rs � S (6)

where TH = �pI + m[ru + (ru)T] and TE ¼ eEE � e
2
ðE � EÞI are

the viscous and electric stresses, S is given by a constitutive law
that accounts for interfacial rheology. In this paper, we con-
sider surface viscosities given via the Boussinesq–Scriven law:57

S = gP + (l � n)YP + nDs(us), (7a)

Y = rs�us, Ds(us) = rsus + (rsus)
T (7b)

where g is the surface tension, P = I � nnT, Y is the surface
dilatation, Ds(us) is the surface deformation, l, n are parameters
denoting the interface dilatational and shear viscosities,
respectively. rs = P�r is the surface divergence, and us = P�u
is the surface velocity. Taking the surface divergence of eqn (7),
the right-hand side of the stress balance eqn (6) becomes

TH þ TE
� �� �

� n ¼ k gþ l� nð ÞY½ �n� l� nð ÞrsY � nTS; (8a)

TS = rs�Ds(us), (8b)

where k is the mean curvature.

2.2 Spheroidal model

In our formulation we focus on spheroidal deformations and
seek a leading-order truncated solution in spheroidal coordi-
nates as provided in ref. 28. The spheroidal coordinates system
has been used successfully to analyze the electrohydrodynamics

of leaky dielectric drops.18,19,28,29,58–61 The reader is referred to
these studies for detailed derivations. Here, we provide an
outline of the solution.

Focusing on the axisymmetric flow, the prolate spheroidal
coordinates (x,Z) can be expressed in the cylindrical coordi-
nates (r,z) as

z ¼ cxZ; r ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1ð Þ 1� Z2ð Þ

q
; (9)

where c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

is the semi-focal length, and a and b are the
major and minor semi-axis, respectively. Defined as such, x A
[1,N), Z A [�1,1], and surfaces of constant x are spheroids
while surfaces of constant Z are hyperboloids. Therefore the
prolate drop surface is simply given by x = x0(t) � a/c. Volume

conservation of the drop relates a and b to x0(t) as aðtÞ ¼

r0

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0ðtÞ�23

p
and bðtÞ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0ðtÞ�26

p
, where r0 is the

radius of an initially spherical drop. In the following we use
hx, hZ and hz to denote the metric coefficients in the prolate
spheroidal coordinates.

The incompressible Stokes equations in eqn (1) are
expressed in terms of the stream function that now satisfies
the equation

(E2)2cj = 0, (10)

where

E2 ¼ 1

c x2 � Z2ð Þ x2 � 1
� � @2

@x2
þ 1� Z2
� � @2

@Z2

� �
:

Then, the flow field is calculated from uj ¼ �
1

hxhz

@cj

@Z
and

vj ¼
1

hZhz

@cj

@x
. The electric potentials fj in each phase are

obtained from eqn (3) with the corresponding boundary con-
ditions, and are then expressed in terms of Legendre functions.
The flow field and electric potential problems are tied together
at the drop interface through the stress balance. In the
presence of surface rheology, the stress balance is modified
to include the effects of surface shear and dilatational viscos-
ities:

TH
xZ þ TE

xZ

h ih i
¼ �ðl� nÞHZZ

@Y
@Z
� nTS

xZ; (11a)

TH
xx þ TE

xx

h ih i
¼ gkþ ðl� nÞkY� nTS

xx; (11b)

where

TS
xZ ¼ EZzHzzD

s
ZZ � EZzHzzD

s
zz þHZZ

@Ds
ZZ

@Z
; (12a)

TS
xx = ExZHZZDs

ZZ + ExzHzzD
s
zz, (12b)

HZZ = 1/hZ, Hzz = 1/hz, and Eij ¼
1

hi

@hj
@xi

. The surface strain tensor

Ds is provided in Appendix B. Taylor62 first recognized the
challenge of satisfying the stress balance over the surface of a
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spheroid. In our model, the solutions of the Stokes equation
in prolate spheroidal coordinates are expressed as a series
of Gegenbauer functions of the first and second kinds.63,64

However, in our model we truncate the solutions and only keep
the first mode.19 As a result, the stress balance at this mode is
not satisfied at every point on the spheroidal drop. To remedy
this, we employ the approaches in ref. 58,65. We perform a
Galerkin projection of the normal (tangential) stress balance
onto the normal (tangential) velocity u (v), and integrate over
the surfaceð

S

u � TH
xZ þ TE

xZ

h ih i
¼ �

ð
S

u � ðl� nÞHZZ
@Y
@Z
þ nTS

xZ

	 

; (13a)

ð
S

v � TH
xx þ TE

xx

h ih i
¼
ð
S

v � gkþ ðl� nÞkYþ nTS
xx

n o
: (13b)

We non-dimensionalize the problem using r0 for length, E0

for electric field, e2E0
2r0/m1 for velocity, and e2E0

2 for stresses.
Three dimensionless parameters emerge from scaling: the
electric capillary number CaE = e2E0

2r0/g, and the Boussinesq
numbers md = l/m1r0 and ms = n/m1r0. However, the shear and
dilatational viscosities may have, in exceptional cases, the same
order of magnitude,66,67 in general md c ms.

68–72 For example,
surface viscosity measurements for sodium lauryl sulfate (SLS;
md E 2.5 � 10�3 N s m�1, ms E 1.7 � 10�7 N s m�1) or sodium
lauryl sulfate–lauryl alcohol (SLS–LOH; md E 39.8 �
10�3 N s m�1, ms E 0.2 � 10�3 N s m�1).73 In these cases, the
dilatational viscosity is about 2 (SLS) to 4 (SLS–LOH) orders of
magnitude larger than the shear viscosity (md c ms). Consider-
ing a water–ethanol mm-sized drop with interior viscosity
0.042 N s�1 m�2,8 the Boussinesq numbers would fall in the
range E4 � 10�3 to 9.5 � 102. In this study, we consider
Boussinesq numbers ranging from 0 to 103.

After applying the approach in ref. 19 and 28, we can show
that the solutions of the governing equations (together with
the boundary conditions) reduce to an ordinary differential
equation for the shape parameter

dx
dt
¼ 1

F

QT

c2
HT þ

QN

c2
f21 � f24

� �
; (14)

where

QN ¼ CaE �cþ aQ01
� �2þ �cþ a

Q1

x0

� �2

�2b2

er

" #
; (15a)

QT ¼ CaE �cþ aQ01
� �

�cxþ aQ1ð Þ � xb2

er

� �
; (15b)

HT ¼
f11 mrf22 þ f23 � md � msð Þf27 þ msf28ð Þ
mrf14 þ f15 þ md � msð Þf16 þ msf17

; (15c)

F ¼ 2

3
mrf25 þ f26 � md � msð Þf29 þ msf30ð Þ: (15d)

In these equations, a, b are coefficients of the electric
potential fj, Q1 is a Gegenbauer function of the second
kind,63,64 and the primes denote differentiation with respect
to x. The x-dependent functions fn’s are provided in Appendix A.

Moreover, in the absence of charge relaxation, contributions
from the Maxwell stresses QN


c2 and QT


c2 reduce to

QN


c2 ¼ CaEK

2 �2sr2

er þ sr2 þ 1

� �
; (16a)

QT


c2 ¼ CaEK

2sr 1� sr=erð Þ; (16b)

where K � Q1 x0ð Þ � x0Q01 x0ð Þ
� �

Q1 x0ð Þ � srx0Q01 x0ð Þ
� �

.

3 Results and discussion
3.1 Model validation

Mandal and Chakraborty47 performed an asymptotic analysis
for a small electric capillary number CaE { 1 to investigate the
effects of surface viscosities on the dielectrophoresis of drops.
A close inspection of their normal stress balance (eqn (15) in
their paper) suggests that their small-deformation analysis is
valid up to ms, md � Oð1Þ. We use the small-deformation results
to validate our spheroidal model predictions for the deforma-
tion number,

D ¼ a� b

aþ b
; (17)

with the following expectations: (1) our results should agree
qualitatively with their model for a fixed value of electric
capillary number and varying md, ms up to order 1; (2) our
results should show good quantitative agreement with their
model for a fixed value of the surface viscosities in the limit
CaE { 1.

Fig. 2 shows the deformation number for a phenylmethyl-
siloxane–dimethylsiloxane (PMM) drop suspended in silicone
oil medium47,74 with mr = 1/1.4706, sr = 1/1.25, er = 1/1.0566 as a
function of the surface viscosities (Fig. 2(a)) and as a function of
the electric capillary number (Fig. 2(b)). The solid lines denote
results from the large deformation analysis while the dashed
lines represent results from the small deformation analysis
in.47 In Fig. 2(a), the electric capillary number is fixed at CaE =
0.2. The curves are color-coded to denote the sole-effect of the
dilatation viscosity (red), the sole-effect of the shear viscosity
(blue), and their combined effect (black).

As expected, our spheroidal results show good qualitative
agreement with the small deformation analysis for all three
effects. Quantitatively, the difference between the two approxi-
mations is less than 1%. As previously predicted in ref. 47, the
dilatation viscosity acts to increase the deformation whereas
the shear viscosity suppresses it compared to a clean drop.
In Fig. 2(b), the dilatational viscosity (md = 1) and shear viscosity
(ms = 1) are fixed, and the deformation is plotted as a function of
the electric capillary number CaE. The curves are color-coded to
represent the sole-effect of the dilatation viscosity (red), the
sole-effect of the shear viscosity (blue), and the clean drop case
(black). For the given fluid properties, a strong electric field is
necessary to yield significant drop deformation. At values of the
electric capillary number up to E0.5, our results show excellent
agreement with the predictions from the small deformation
analysis. However, results from the small deformation analysis
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become less accurate and consequently deviate from the large
deformation analysis results at a stronger electric field and
larger D. Contrasting Fig. 2(b) and 3(a), we note that Fig. 2(b)
remains in the small deformation regime (D o 0.1) for a large
range of CaE. This is not true for Fig. 3(a), where 0 o D o 0.3.
Zooming into 0 o D o 0.1 (the small deformation regime) in
Fig. 3(a) reveals that the deformation is of a similar magnitude
compared to Fig. 2(b).

3.2 Effect of surface viscosities on deformation

3.2.1 Influence of interior circulation. A leaky dielectric
drop in a leaky dielectric medium can deform into a prolate or
oblate shape, depending on the fluids’ electric parameters.5–7,12

Moreover, as illustrated in Fig. 1(b) two modes of deformation
exist for a prolate drop: the prolate ‘A’ drop with an equator-to-
pole circulation, and the prolate ‘B’ drop with a pole-to-equator

circulation. In this section, we investigate the effects of varying
the surface viscosities on the deformation for a wider range of
electric capillary numbers.

Fig. 3 shows the deformation number as a function of the
electric capillary number for a drop with equator-to-pole circu-
lation ((Fig. 1(a), mr = 1, sr = 0.1, er = 10, prolate ‘A’) and
with pole-to-equator circulation (Fig. 1(b), mr = 1, sr = 0.04,
er = 1/50, prolate ‘B’). For these electric parameters, numerical
simulations12 reveal a critical electric capillary number (the
value beyond which equilibrium deformations cease to exist).

For the clean drops, the boundary integral method
simulations12 agree well with our spheroidal model19,28 for
the full range of electric capillary numbers. By comparison,
the small deformation theory (dashed curves) shows agreement
only up to CaE E 0.1.

Surface rheology affects the deformation in several impor-
tant ways. First, the effects of the shear viscosity (ms = 100, blue
curves) appears to be more significant than those from the

Fig. 2 (a) Equilibrium D deformation scaled by the clean drop deforma-
tion Dc as a function of the dilatational and shear viscosities for CaE = 0.2.
The curves are color-coded to denote the sole-effect of dilatational
viscosity (red), shear viscosity (blue) and their combined effect (black).
(b) Equilibrium deformation D as a function of electric capillary number.
The curves are color-coded to denote the sole-effect of dilatational
viscosity (red), shear viscosity (blue) and the clean drop case (black).
In both panels, the solid curves represent results from the large deforma-
tion analysis (large-def) and the dashed curves represent results from the
small-deformation analysis (small-def) in ref. 47. Other parameters are
mr = 1/1.4706, sr = 1/1.25, er = 1/1.0566.

Fig. 3 Equilibrium deformation D as a function of the electric capillary
number for (a) a prolate ‘A’ drop with mr = 1, sr = 0.1, er = 10 and (b) a prolate
‘B’ drop with mr = 1, sr = 0.04, er = 1/50. In (a) and (b), the solid curves
represent results from the large deformation analysis (large-def), the
dashed curves represent results from the small deformation analysis
(small-def) in ref. 47, and the symbols denote boundary integral method
simulations for a clean drop.12 In both panels, the curves are color-coded
to denote the sole-effect of dilatational viscosity (red), shear viscosity
(blue) and the clean drop case (black).
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dilatation viscosity (md = 100, red curves). This is observed by
the larger magnitude of deformation compared to the clean
drop, and is especially pronounced for a prolate ‘A’ drop
(Fig. 2(b) and 3(a)). Second, the rheological effects depend on
circulation. Indeed, the dilatation viscosity yields larger (smaller)
deformation compared to the clean drop when the interior
circulation is from equator-to-pole (pole-to-equator). The reverse
is true for the shear viscosity: smaller (larger) deformation is
predicted for a prolate ‘A’ (prolate ‘B’) drop. Third, Fig. 3(a) and (b)
also suggest some effects on the critical electric capillary number,
beyond which equilibrium shapes cannot be achieved and the
drop breaks up. Since dilatational viscosity yields larger deforma-
tion compared to the clean drop, it suggests that the critical
electric capillary number is reduced. Likewise, the critical electric
capillary number is increased as a result of shear viscosity.
In other words: the dilatation (shear) viscosity destabilizes (stabi-
lizes) the drop. This is consistent with recent results for a settling
drop under gravity.41

3.2.2 Combined effect of surface viscosities. We observe
from Fig. 2(a) that deformation can be enhanced or suppressed
depending on various combinations of the surface viscosities.
Fig. 4 shows a phase plane for the combined effect of the shear

and dilatational viscosities on the equilibrium deformation of a
prolate ‘A’ drop (Fig. 4(a)) and prolate ‘B’ drop (Fig. 4(b)). In
both panels, the electric capillary number CaE = 0.2, and the
deformation D is scaled by the clean drop deformation Dc.

For a given prolate mode (‘A’ or ‘B’), the figure shows regions
where the combination yields deformation that is larger
(D=Dc 4 1) or smaller (D=Dc o 1) compared to the clean drop
case. Our results show that the boundaries between the two regions
are the lines ms = md/2.68 (prolate ‘A’) and ms = md/2.64 (prolate ‘B’).
In the case of the prolate ‘A’ drop, surface rheology yields larger
deformation when ms o md/2.68, and smaller deformation other-
wise. For the prolate ‘B’ drop, larger (or smaller) deformation is
attained for ms 4 md/2.64 (or ms o md/2.64).

The deformation D = Dc when the surface viscosities com-
bine in such a way to balance surface dilatation with surface
deformation in eqn (11b):

mdkY B ms(kY � TS
xx). (18)

Fig. 5(a) (prolate ‘A’) and Fig. 5(b) (prolate ‘B’) illustrate this
balance that yields identical deformations between drops with

Fig. 4 Deformation phase plane for (a) the prolate ‘A’ and (b) prolate ‘B’
drops in Fig. 3(a) and (b). The contour line D=Dc ¼ 1 denote the boundary
between regions of higher and lower deformations compared to the clean
drop. The electric capillary number CaE = 0.2.

Fig. 5 Deformation number as a function of dimensionless time for
(a) the prolate ‘A’ and (b) prolate ‘B’ drops in Fig. 3(a) and (b). The dashed
and solid lines denote the clean and surface viscosities influenced drops,
respectively. The insets show the tangential component of the surface
velocity as a function of the drop surface parameter Z. The electric capillary
number CaE = 0.2.
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interfacial viscosities and clean drops. The insets in Fig. 5(a)
and (b) show the tangential surface velocity, where the flow
is suppressed due to surface rheology. The combination of
surface viscosities yields the clean drop deformation despite
the reduction in flow that results from viscous damping on the
surface. The decrease in flow is consistent with previous studies
that showed that the effect of dilatational viscosity or shear
viscosity is to reduce the flow in and around the drop.34 More
extensive predictions from our model (see Appendix C) also
verified that surface viscosities completely suppress the surface
flow and, by extension, the flow in and around the drop in the
limit md, ms -N. In these cases the drop becomes immobilized
since the flow vanishes (viscous stress is zero), and the drop can
no longer deform (the normal Maxwell stress balances out
surface tension force). Moreover, for a given electric capillary
number CaE and set of electric parameters (sr,er), the critical
ratio a � md/ms that results in D = Dc can be approximated from
eqn (18) (see Appendix D). Our analysis shows that it is the
result of competing, and opposing, actions between surface
dilatation and surface deformation.

3.2.3 Influence of surface viscosities on conducting drops.
In previous sections, we focused on the effects of surface
rheology on leaky dielectric drops. It is natural to ponder
whether surface viscosities would affect conducting drops in
similar fashion. To investigate this inquiry, we use experi-
mental data for a water–ethanol droplet in silicone oil8 with
mr = 23.3, sr = 10�5, er = 0.05 and examine the dynamics at
equilibrium and above the critical electric capillary number.

At equilibrium: for a conducting drop, the tangential electric
stress QT


c2 � 0. Thus, the product QTHT


c2 � 0 in eqn (14)

and the equilibrium deformation is solely the result of the
balance between the normal electric stress and the surface
tension force. Since the surface viscosities enter the dynamics
through HT, we expect the equilibrium deformation to be
independent of surface rheology. Fig. 6(a) shows the aspect
ratio a/b as a function of dimensional time with CaE = 0.2. The
curves resulting from the presence of dilatational and shear
viscosities are identical to the clean drop case at equilibrium,
consistent with our analysis of eqn (14). The inset in the figure
focuses on the region, around T = 0.5 s, with the largest
difference between the curves. It shows that, while surface
rheology has no effects on the equilibrium deformation, it does
affect the transient deformation. Again, this is expected from
the expression of F in eqn (14). We note that for the case of
dilatational viscosity, our result is consistent with a recent
study that showed that the dilatational viscosity has no effect
on the equilibrium deformation of a conducting drop.48 Based
on our analysis, the study’s conclusion extends to shear
viscosity as well.

Above the critical electric capillary number: Fig. 6(b) shows the
experimental data and predictions from the large deformation
analysis for the aspect ratio a/b as a function of dimensional
time. The symbols represent the experimental data, with an
estimated 10% fitting error (error bars). The aspect ratio slowly
rises before a drastic jump. Given similar fluids’ electric para-
meters, the onset of the jump occurs around t E 9 s. Surface

viscosities, md and ms lead to an earlier jump onset compared to
the clean drop case. The time of the onset in this case depends
on the magnitude of the surface viscosities. In the case of an
inviscid drop (mr - N), we expect all three transient shapes to
be nearly identical since the effects of surface rheology depend
on the viscosity contrast, with inviscid droplets being affected
most by the interfacial rheology.34

3.3 Magnitude of drop deformation depends on interplay
between surface dilatation and surface deformation

The surface shear and dilatational viscosities both act to reduce
the drop surface velocity us, which may be entirely suppressed
as md, ms -N. Since both surface viscosities reduce the surface
velocity, the latter alone is not sufficient to understand the
opposite effect of the dilatational and shear viscosities on
the deformation. Moreover, we recall that the effect of
surface rheology also depends on the drop’s interior circulation
(pole-to-equator or equator-to-pole). To further understand this
deformation dynamic, we recast the normal stress balance

Fig. 6 The aspect ratio a/b as a function of dimensional time t for
mr = 23.3, sr = 10�5, er = 0.05. The electric capillary number (a) CaE = 0.2
and (b) CaE = 0.20469. In both panels, the curves are color-coded
to denote the sole-effect of dilatational viscosity (red), shear viscosity
(blue), and the clean drop case (black). The symbols in (b) represent
experimental results for the clean drops including a 10% fitting error (error
bars).8
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equation as

TH
xx

h ih i
|fflfflffl{zfflfflffl}

D1

þ TE
xx

h ih i
|fflfflffl{zfflfflffl}

D2

� mdkY|fflffl{zfflffl}
D3

� ms TS
xx � kY

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

D4

¼ gk|{z}
D5

: (19)

In the presence of surface viscosities, eqn (19) shows that
equilibrium drop deformations depend on nontrivial interplay
between viscous (D1), electric (D2), and surface stresses (D3–D5).
In the next sections, we investigate the surface dilatation and
surface deformation for the two prolate modes separately, and
we also analyze these surface variables to extract useful insights
into the stability of the drop. To address the surface rheology
effects simultaneously we consider combinations of surface
viscosities such that D=Dc 4 1 and D=Dc o 1 from Fig. 4.

3.3.1 Equilibrium prolate ‘A’ shape. As a representative
case, we consider the prolate ‘A’ drop with mr = 1, sr = 0.1,
er = 10. Fig. 7 shows the dimensionless number (a), surface
dilatation, Y = rs�us (b), and surface deformation (c) when
D=Dc 4 1. As we noted earlier, the sole-effect of the dilatational
viscosity (ms = 0) on a prolate ‘A’ drop is to increase deformation
compared to the clean drop case. In this case, the normal stress
balance reduces to D1 + D2 � D3 = D5. Since Y o 0 at the poles,
the term �D3 is positive and thus the drop expands at the pole,
which results in an increase in the curvature and larger
deformation compared to the clean drop.

Surface deformation (D4) begins to play a role when the
shear viscosity is introduced. For md = 10,ms = 1 [Fig. 7(a)–(c)],

�D4 is negative; however, the net result �D3 � D4 4 0. The
combination of the surface viscosities yields a larger curvature
at the poles, resulting in a larger deformation compared to the
clean drop (Fig. 7(a)). On the other hand, when md = 1,ms = 10
[Fig. 7(d)–(f)], the net result �D3 � D4 o 0. In this case, the
curvature of the drop must decrease in order to balance
eqn (19). The reduction in curvature in turn leads to smaller
deformation compared to the clean drop case (Fig. 7(d)).

It is worth noting that a larger shear viscosity increases the
viscous damping that acts to suppress the flow. Changes in the
flow in turn have a direct effect on the deformation: a larger
deformation is expected when ms is low (Fig. 7) versus when the
shear viscosity is high (Fig. 7(d)). The increase and decrease in
deformation compared to the clean drop case is illustrated
in Fig. 9(a) along with the streamlines. The dashed curves
represent the clean drop. Here we note that the flow is more
suppressed when D=Dc o 1 (left-half of Fig. 9(a)). This
dynamics contrasts with the stronger circulation we observe
for D=Dc 4 1 (right-half of Fig. 9(a)).

3.3.2 Equilibrium prolate ‘B’ shape. We consider the prolate
drop with mr = 1, sr = 0.04, er = 1/50, and begin by analyzing the
rheological effect in the absence of dilatational viscosity. The
normal stress balance reduces to D1 + D2 � D4 = D5, and both the
surface dilatation and surface deformation play a role. However,
the surface deformation dominates over surface dilatation. The
term �D4 4 0, resulting in an increase in the curvature at the
poles and a larger deformation compared to the clean drop case.

Fig. 7 (a and d) Deformation as a function of dimensionless time; (b and e) surface dilatation, Y = rs�us, and (c and f) surface deformation, TS
xx for the

prolate ‘A’ drop in Fig. 3(a). The top row represents the case with md = 10, ms = 1 (D=Dc 4 1), and the bottom row represents the case with md = 1, ms =
10 (D=Dc o 1). The colormaps show the magnitude and distribution of the surface dilatation and surface deformation. The electric capillary number
CaE = 0.3, and the surface dilatation and surface deformation correspond to T = 100.
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Gradually increasing the dilatational viscosity leads to an
even greater influence of surface dilatation (D3). At low values of
the dilatational viscosity [Fig. 8(d)–(f)], the contribution of D4

still dominates, and the corresponding combinations of surface
viscosities also yield larger deformation (Fig. 8(d)). On the other
hand, when md = 10, ms = 1 [Fig. 8(a)–(c)], the balance between
surface dilatation and surface deformation is reversed. The
surface dilatation now dominates and the net result �D3 �
D4 o 0. Correspondingly, the combinations of surface viscosi-
ties yield a smaller deformation compared to the clean drop
case (Fig. 8(a)).

We also illustrate the drop shape and circulation for the
prolate ‘B’ drop in Fig. 9(b). For this prolate mode with a pole-
to-equator circulation, a larger deformation is expected when ms

is high [Fig. 8(d) and 9(b) (left-half)] versus when the shear
viscosity is low [Fig. 8(a) and 9(b) (right-half)].

4 Conclusions

We investigated the effects of surface rheology on the electro-
hydrodynamics of a viscous drop by considering various modes

Fig. 8 (a and d) Deformation as a function of dimensionless time; (b and e) surface dilatation, Y = rs�us, and (c and f) surface deformation, TS
xx for the

prolate ‘B’ drop in Fig. 3(b). The top row represents the case with md = 10, ms = 1 (D=Dc o 1), and the bottom row represents the case with md = 1, ms = 10
(D=Dc 4 1). The colormaps show the magnitude and distribution of the surface dilatation and surface deformation. The electric capillary number CaE =
0.4, and the surface dilatation and surface deformation correspond to T = 150.

Fig. 9 Drop shapes and streamlines (a) for the prolate ‘A’ drop in Fig. 3(a) with CaE = 0.3, and (b) for the prolate ‘B’ drop in Fig. 3(b) with CaE = 0.4. In each
panel, the left-half shows the shape with ms = 10,md = 1, and the right-half shows the shape with ms = 1, md = 10. In both panels, the dashed curve denotes
the clean drop shape. Numbers on the streamline denote the magnitude of the flow, while the dotted lines show the direction of the flow.
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of prolate deformation. We solved the governing equations by
performing a large deformation analysis based on spheroidal
harmonics. The model is validated against a previous study
based on small-deformation analysis (CaE { 1),47 and is found
to be in good agreement with the previous results in the
literature.

We then use our model to investigate a range of surface
rheological effects on deformation. We found that the influence
of surface viscosities varies with (i) the fluids’ electric para-
meters that determine the circulation and type of drops (leaky
versus conducting), and (ii) the viscosity contrast. The main
findings are summarized as follows:
	While the effects of surface viscosities on the deformation

of the prolate ‘A’ drop are consistent with observations from
previous studies,39 the prolate ‘B’ reveals patterns not previously
reported: shear (dilatational) viscosity enhances (suppresses)
deformation (this finding highlights the importance of flow
direction in assessing surface viscosity effects).
	 For a given prolate mode (‘A’ or ‘B’), surface viscosities can

be combined to affect the strength of the flow, resulting in
deformations that are larger (low viscous damping) or smaller
(high viscous damping) compared to the clean drop case.
	 Surface viscosities affect the critical electric capillary

number, consistent with previous studies.41,43 For an unstable
drop, both surface viscosities together speed up the onset
of blow up (the time when the rate of drop break up is the
highest).
	 As md, ms - N the flow is completely suppressed and the

drop becomes immobilized (see Appendix C).
To explain the various observations, we analyzed surface

deformation and surface dilatation which play important roles
when surface viscosities are accounted for. We determined that
the nontrivial influence of surface viscosities on drop deforma-
tion are a result of the interplay between dilatation and surface
deformation. Our results can also be understood by consider-
ing a dilatational viscosity-induced effective surface tension
geff = g � mdY. For a prolate ‘A’ drop, the average surface
dilatation is positive, leading to a reduction in surface tension
(geff o g) and thus an increase in deformation. For a prolate ‘B’
drop, the average surface dilatation is negative, yielding
geff 4 g) and a decrease in deformation. Moreover, we con-
firmed previous results that surface rheology does not affect the
equilibrium deformation of a conducting drop.48

The effects of surface viscosities are not easily measured
experimentally. Our findings, together with flow and deforma-
tion data, provide another tool for approximating the effects
and/or values of the surface viscosities. Moreover, the rich
dynamics of behaviors we discussed suggests that the flow
and deformation can be effectively controlled by optimizing
surface viscosities.

In our previous work,29 we found the equilibrium deforma-
tions of some surfactants-covered drops to be D = 0.4 (prolate
‘A’, sr = 1/3, er = 1) and D = 0.05 (prolate ‘B’, sr = 1/3, er = 1/3.5)
with surfactants coverage w = 0.3, surface Péclet number Pes =
10 and CaE = 1. These deformations are of the same order of
magnitude as those obtained using the rheological model in

the present study (for the prolate ‘A’ drop, D 4 0.4 with
md = 100 and D E 0.37 with ms = 100, while for the prolate ‘B’
drop, D E 0.047 with md = 100 and D 4 0.05 with ms = 100).
This comparison suggests that both Marangoni and surface
viscosities effects are important, and a complete picture of the
effects of surfactants on drops in a dc electric field must
include both effects. We are currently working on incorporating
Marangoni stress into our model and will expand on these
results in future studies.
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Appendices

Appendix A. Shape dependent
functions

The functions f11(x0) � f17(x0) in eqn (14), (15c) and (15d) are
given as follows:

f11 ¼
ð
ZG3ðZÞ
x02 � Z2

dZ; (20)

f12 ¼
1

x02 � 1

ð
G3ðZÞ

2ZG03ðZÞ
x02 � Z2ð Þ2

þ G003ðZÞ
x02 � Z2

 !
dZ; (21)

f13 ¼
G03G

00
5 � G05G

00
3

2N
f11; (22)

f14 ¼ �x0H 03
ð

ZG3ðZÞ
x02 � Z2ð Þ2

dZþH 003
2
f11; (23)

f15 ¼ x0H
0
3

ð
ZG3ðZÞ
x02 � Z2ð Þ2

dZ�
G3G

00
5 � G5G

00
3

� �
H 03

2N
f11; (24)

f16 ¼
x02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 � 1

p
H 03

c

ð
Z2 Z2 � 1
� �

x02 � Z2ð Þ7=2
; (25)

f17 ¼
x02H 03

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 � 1

p ð
Z2 Z2 � 5x02 þ 4
� �

1� Z2
� �

x02 � Z2ð Þ7=2
; (26)

The functions f21(x0) � f29(x0), and f30(x0) in eqn (14), (15c),
and (15d) are given as follows:

f21 ¼
x02

2

ð
3Z2 � 1
� �

ðZ2 � 1Þ
x02 � Z2

dZ; (27)

f22 ¼ �H 03
ð
1� 3Z2
� �

2Z4 þ x02 � 3x02Z2
� �
x02 � Z2ð Þ2

dZ

þ 3H3x0

ð
1� 3Z2

x02 � Z2
dZ; (28)

Paper Soft Matter



786 |  Soft Matter, 2023, 19, 776–789 This journal is © The Royal Society of Chemistry 2023

f23 ¼ �
49

30N
G3H

0
3 1� 3x0

2
� �

þH 03

ð
1� 3Z2
� �

2Z4 þ x02 � 3x02Z2
� �
x02 � Z2ð Þ2

dZ; (29)

f24¼
1

c
x0 x0

2�1
� �1=2ð 3Z2�1

x02�Z2ð Þ3=2
dZþ x0

x02�1ð Þ1=2
ð

3Z2�1

x02�Z2ð Þ1=2
dZ

"
;

(30)

f25 ¼ �
x0

x02�1

ð
1�3Z2
� �

2x02�Z2�1
� �

G03ðZÞ
x02�Z2ð Þ2

dZ

þ3x0

ð
1�3Z2

x02�Z2
dZ

þ mr�1ð Þf12þ f13

mrf14þ f15þ md�msð Þf16þmsf17

� H 03

ð
1�3Z2
� �

2Z4þx20�3x02Z2
� �
x02�Z2ð Þ2

dZ

 

�3x0H3

ð
1�3Z2

x02�Z2
dZ
�
;

(31)

f26 ¼
x0

x02�1

ð
1�3Z2
� �

2x02�Z2�1
� �

G03ðZÞ
x02�Z2ð Þ2

dZ� 49

30N
1�3x0

2
� �

G03

þ mr�1ð Þf12þ f13

mrf14þ f15þ md�msð Þf16þmsf17

� �H 03
ð
1�3Z2
� �

2Z4þx02�3x02Z2
� �
x02�Z2ð Þ2

dZ

 

þ 49

30N
G3H

0
3 1�3x0

2
� ��

;

(32)

f27¼
x04=3H30

x02�1ð Þ1=6
ð
1�3Z2
� �

2x02�Z2�1
� �

Z4þx02 1�2Z2
� �� �

x02�Z2ð Þ7=2
;

(33)

f28¼
x0H 03

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02�1

p ð
1�3Z2
� �
x02�Z2ð Þ7=2

� Z4þZ6�x0
4 1�3Z2
� �

�x0
2 3Z4þ2Z2�1
� �� �

(34)

f29¼
mr�1ð Þf12þ f13

mrf14þ f15þ md�msð Þf16þmsf17
f27; (35)

f30¼
mr�1ð Þf12þ f13

mrf14þ f15þ md�msð Þf16þmsf17
f28: (36)

Unless otherwise defined, the Gegenbauer functions
Gn � Gn(x0) and H3 � H3(x0).

Appendix B. Derivation of differential
operators and surface variables in
prolate spheroidal coordinates

We consider the prolate spheroidal coordinates (x, Z, z) and,
as a first step, we assume the problems to be axisymmetric
(q/qz = 0, uz = 0). The unit normal vector n = ex = (1,0,0).

B.1 Surface rate of the strain tensor

The components of the projection tensor P = I � nnT in prolate
spheroidal coordinates (PSC) are

P ¼ Pijeiej ¼

0 0 0

0 1 0

0 0 1

0
BBB@

1
CCCA (37)

For the axi-symmetric problem, the strain tensor

DðuÞ ¼

Dxx DxZ 0

DZx DZZ 0

0 0 Dzz

0
BBB@

1
CCCA (38)

where

Dxx ¼ 2
@v=@xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
x2 � Z2
� �

� uZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
c x2 � Z2ð Þ3=2

DxZ ¼
�ux

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
þ @u=@xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
x2 � Z2
� �

c x2 � Z2ð Þ3=2

þ
vZ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
þ @v=@Zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
x2 � Z2
� �

c x2 � Z2ð Þ3=2

DZZ ¼ 2
@u=@Zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
x2 � Z2
� �

þ vx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
c x2 � Z2ð Þ3=2

Dzz ¼ 2
vx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
� uZ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1ð Þ x2 � Z2ð Þ 1� Z2ð Þ

p

Note that Dxx and DxZ are identical to eqn (24) in28

TH
xx ¼ 2

@v

hx@x
þ u

hxhZ

@hx
@Z

� �
; TH

xZ ¼
@ v

hZ

� �
@x

hZ

hx
þ @ v=hxð Þ

@Z
hx

hZ

� �

and DxZ = DZx.
Using eqn (37) and (38), the surface strain tensor is given by

DsðuÞ ¼ P �DðuÞ � P ¼ PimDmnPnjeiei ¼

0 0 0

0 Ds
ZZ 0

0 0 Ds
zz

0
BBB@

1
CCCA;

where Ds
ZZ = DZZ and Ds

zz = Dzz.
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B.2 Differential operators

The surface gradient operator

rs ¼ P � r ¼ P �

1

hx

@

@x

1

hZ

@

@Z

1

hz

@

@f

2
6666666664

3
7777777775
¼

0

HZZ
@

@Z

Hzz
@

@x

2
6666664

3
7777775 (39)

where HZZ ¼
1

hZ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � Z2

p , and Hzz ¼
1

hz
¼

1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1ð Þ 1� Z2ð Þ

p . The surface Laplacian of velocity is the

surface divergence of the surface rate of strain tensor and is
given by

rs �DsðuÞ ¼ P � rð Þ � P �DðuÞ � Pð Þ

¼

�ExZHZZD
s
ZZ � ExzHzzD

s
zz

EZzHzzD
s
ZZ � EZzHzzD

s
zz þHZZ

@Ds
ZZ

@Z

0

2
666664

3
777775;

(40)

where

Eij ¼
1

hi

@hj
@xi

:

Appendix C. Effects of large surface
viscosities on surface velocity

We discuss the influence of increasing surface dilatational and
shear viscosities on the tangential component of the surface
viscosity us�t. Fig. 10 shows us�t as a function of the drop surface
parameter Z in the first quadrant 0 r Z r 1. We consider the
prolate ‘A’ drop in Fig. 3(a) with CaE = 0.3 (a)–(c), and the
prolate ‘B’ drop in Fig. 3(b) with CaE = 0.4 (d)–(f).

Fig. 10(a) and (d) show the sole influence of surface dilata-
tional viscosity, (b), (e) show the sole influence of surface shear
viscosity, and (c), (f) show the combined effect of the surface
viscosities (md = 1 while ms increases). In all six panels, surface
viscosities suppress the surface velocity compared to the clean
drop case (dashed curves). In (a), (b) and (d), (e), the velocity is
completely suppressed (ut E 0) as the viscosities md, ms c 1.
As we elaborated in Section 3.2.1, the deformation is larger
in (a), (e) and smaller in (b), (d). However, as md, ms - N the
surface rheology ceases to affect the deformation: the drop
becomes immobilized (ut - 0).

In Fig. 10(c) and (f), the velocity depends on both surface
viscosities. The surface shear viscosity is a multiple of a = md/20.
Specifically, ms = 0 (J), 3a (&), 7a (}), 100a (r), 1000a (D), where

Fig. 10 Tangential component of the surface velocity us�t as a function of the drop surface parameter Z for the prolate ‘A’ drop in Fig. 3(a) with CaE = 0.3
(a)–(c), and for the prolate ‘B’ drop in Fig. 3(b) with CaE = 0.4 (d)–(f). (a and d) sole influence of surface dilatational viscosity (ms = 0); (b and e) sole influence
of surface shear viscosity (md = 0); (c and f) combined influence of surface viscosities with md = 1. In all panels, the dashed curves denote the clean
drop case.
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7a corresponds to D=Dc ¼ 1 (Section 3.2.2). The strength of
the surface velocity determines whether the deformation with
combined surface viscosities is larger compared to the clean
drop case. For example, considering the prolate ‘A’ drop, the
deformation is larger compared to the clean drop for ms o 7a
and smaller otherwise (ms 4 7a).

Appendix D. Calculation of the critical
ratio a

As discussed in Section 3.2.2, certain combinations of surface
viscosities yield deformations that are identical compared
with those for the clean drop case. By projecting the balance
in eqn (18) onto the normal velocity v, the ratio a � md/ms is
given by

a ¼ 1�
Ð
SvT

S
xxdSÐ

S
vkYdS

: (41)

This ratio depends on the fluids’ electric parameters and on
the electric capillary number, as illustrated in Fig. 11: (a) shows

the ratio as a function the electric capillary number for the
prolate drops in Fig. 5 while (b) presents the same information
for prolate ‘A’ drop with sr = 10, er = 25 and for prolate ‘B’ drop
with sr = 100, er = 1012. For these sets of parameters, we found
that a 4 2 for all values of CaE.
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